[1] Cheng G, L. Zhang, Y. Ren. Characterization and evolution of non- metallic inclusions in GCr15 bearing steels during cooling and solidi-fication. Ironmak. Steelmak. 2020 ; 47(10) : 1217-1225.
[2]Zong N, Huang J, Liu Y, et al. Controlling centre segregation and shrinkage cavities without internal crack in as-cast bloom of steel GCr15 induced by soft reduction technologies. Ironmak. Steelmak. 2020 ; 48(8):944-952.
[3]Wang Y, Yang Z, Zhang F, et al. Microstructures and properties of a novel carburizing nanobainitic bearing steel. Mater. Sci. Eng.: A, 2020 ; 777:139086.
[4]Qian D, Wang H, Pan L, et al. Obtaining ultrafine spheroidized carbides by combining warm deformation with divorced eutectoid transformation in GCrl5 bearing steel. Mater. Res. Express. 2020; 7(4) :046505.
[5]Huo X, Ning Y, Li L, et al. Research and control of network carbide in GCr15 bearing steel. Mater. Res. Express. 2020; 7(1): 016559.
[6]Jiao W, Li H, Feng H, et al. Evolutions of Micro- and Macrostructure by Cerium Treatment in As-Cast AISI M42 High-Speed Steel. Metall. Mater. Tran. B. 2020 ; 51(5): 2240-2251.
[7]Pan F, Chen H, Su Y, et al. Inclusions properties at 1673 K and room temperature with Ce addition in SS400 steel. Sci. Rep. 2017 ; 7(1) : 2564.
[8]Jiang Z , Xu G, Li Y, et al. Effect of Ultra-high Magnesium on SKS51 Liquid Steel Cleanliness and Microstructure. ISIJ Int. 2019; 59(7): 1234-1241.
[9]Li H, Yu Y, Ren X, et al. Evolution of Al2O3 inclusions by cerium treatment in low carbon high manganese steel. J. Iron Steel Res. Int. 2017; 24(9): 925-934.
[10]Li X, Jiang Z, Geng X, et al. Evolution Mechanism of Inclusions in H13 Steel with Rare Earth Magnesium Alloy Addition. ISIJ Int. 2019; 59(9): 1552-1561.
[11]Duan J, Jiang Z, Fu H. Effect of RE-Mg Complex Modifier on Structure and Performance of High Speed Steel Roll. J. Rare Earths. 2007; 25: 259-263.
[12]Hufenbach J, Helth A, Lee M, et al. Mater. Sci. Eng. : A, 2016; 674 ; 366-374.
[13]Zheng S, Gong Y, Zhao D, et al. Action of Magnesium on Carbide Spheroidization in Annealed Bearing Steel. Adv. Mater. Res. 2012; 476-478: 129-133.
[14]Dadkhah H. Microstructure of Cast Uhrahigh Carbon Steel (UHCS) Modified via Fe-Si-Mg-Ca-RE. Trans. Indian Inst. Met. 2014; 67 (6): 1001-1004.
[15]Korda A, Mutoh Y, Miyashita Y, et al. Effects of pearlite morphology and specimen thickness on fatigue crack growth resistance in ferritic-pearlitic steels. Mater. Sci. Eng. A, 2006 , 428 (1 -2) : 262- 269.
[16]Saito Y. Modelling of microstructural evolution in thermomechanical processing of structural steels. Mater. Sci. Eng. A. 1997 , 223(1- 2) : 134-145.
[17]Hsu T. Effects of Rare Earth Element on Isothermal and Martensitic Transformations in Low Carbon Steels. ISIJ Int. 1998, 38 ( 11 ): 1153-1164.
[18]Lewandowski J, Thompson, A. Effects of the prior austenite grain size on the ductility of fully pearlitic eutectoid steel. Metall. Trans. A. 1986, 17(3): 461-472.
[19]Nuri Y, Ohashi T, Hiromoto T, et al. Solidification Microstructure of Ingots and Continuously Cast Slabs Treated with Rare Earth Metal. Trans. Iron Steel Inst. Jpn. 1980; 66(6) : 618-627.20.
[20]Hong Z, Li S, Lin L, et al. Secondary dendrite arm coarsening and peritectic reaction in NdFeB alloys. J. Cryst. Growth. 2009 ; 311 (2) : 420424.
[21]Qu M, Watig Z; Li H, et al. , Effects of mischmetal addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel. J. Rare Earths. 2013; 31 (6) : 628-633.
[22] Elwazri A, Wanjara P, Yue S, The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel. Mater. Sci. Eng. A, 2005 ; 404(1-2) : 91-98.
[23]Song S, Xu Y, Chen X, et al. Effect of rare earth cerium and impurity tin on the hot ductility of a Cr-Mo low alloy steel. J. Rare Earths. 2016 , 34(10) : 1062-1068.
|