ISSN:1003-8620

CN:42-1243/TF

主管:中信泰富特钢集团股份有限公司

主办:大冶特殊钢有限公司

特殊钢 ›› 2025, Vol. 46 ›› Issue (1): 117-125.DOI: 10.20057/j.1003-8620.2024-00096

• 应用与服役 • 上一篇    下一篇

基于MI和XGBoost算法电渣重熔终点磷含量预报模型

刘玉潇1, 董艳伍1,2,3, 姜周华1,2,3, 陈玺1   

  1. 1 东北大学冶金学院,沈阳110819;
    2 东北大学轧制及自动化国家重点实验室,沈阳110819;
    3 东北大学多金属共生矿生态化冶金教育部重点实验室,沈阳110819
  • 收稿日期:2024-04-17 出版日期:2025-02-01 发布日期:2025-01-16
  • 通讯作者: 董艳伍
  • 作者简介:刘玉潇(1998—),男,博士
  • 基金资助:
    国家自然科学基金(No. 52174303)、国家自然科学基金(No. 51874084)、中央高校基本科研业务费(No. 2125026)

Prediction Model of Phosphorus Content at the End Point of Electroslag Remelting Based on MI and XGBoost Algorithms

Liu Yuxiao1, Dong Yanwu1,2,3, Jiang Zhouhua1,2,3, Chen Xi1   

  1. 1 School of Metallurgy, Northeastern University, Shenyang 110819,China;
    2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819,China;
    3 Key Laboratory of Ecological Metallurgy of Multimetallic Mineral, Northeastern University, Minist Educ, Shenyang 110819,China
  • Received:2024-04-17 Published:2025-02-01 Online:2025-01-16

摘要: 研究针对电渣重熔流程提出了一种基于互信息法(MI)和XGBoost的电渣重熔终点磷含量预报模型,利用互信息法对影响终点磷含量的因素进行特征选择与特征评估,特征选择后的数据集作为模型的输入变量。建立MI-XGBoost模型对生产数据进行训练及验证,利用网格搜索交叉验证对模型结构调整和超参数优化,并与MI-RR、MI-RF、MI-GBDT和MI-KNN模型进行横向对比,结果表明,MI-XGBoost模型具有最高的预测精度,MI和GridSearchCV的加入提高了模型预测性能和拟合能力。通过对于测试集的验证,MI-XGBoost模型的R2、平均绝对误差、解释方差分数和最大误差的数值分别为0.889 4、0.000 4、0.897 2和0.004 1,均优于MI-RR、MI-RF、MI-GBDT和MI-KNN模型。MI-XGBoost模型实现了终点磷含量的有效预测,为电渣重熔流程终点控制和判断提供了很好的参考,为实现电渣重熔过程智能化提供了一个新思路。

关键词: 电渣重熔, 互信息法, XGBoost算法, 磷含量, 机器学习

Abstract: This study proposes a phosphorus content prediction model for the endpoint of electroslag remelting (ESR) refining process based on Mutual Information (MI) method and XGBoost. The MI method is utilized for feature selection and assessment of factors affecting the endpoint phosphorus content. The dataset after feature selection serves as the input variables for the model.The MI-XGBoost model is trained and validated using production data. Grid search cross-validation is employed for model structure adjustment and hyperparameter optimization. It is compared horizontally with MI-RR, MI-RF, MI-GBDT, and MI-KNN models. The results demonstrate that the MI-XGBoost model exhibits the highest prediction accuracy. The incorporation of MI and GridSearchCV enhances the model's predictive performance and fitting ability.Validation of the test set shows that the MI-XGBoost model achieves R2, Mean Absolute Error, Explained Variance Score, and Maximum Error values of 0.889 4, 0.000 4, 0.897 2, and 0.004 1, respectively, all superior to MI-RR, MI-RF, MI-GBDT, and MI-KNN models. The MI-XGBoost model effectively predicts the endpoint phosphorus content, providing valuable reference for endpoint control and determination in the ESR refining process. It presents a new perspective for realizing the intelligence of the ESR refining process.

Key words: Electroslag Remelting, Mutual Information Method, XGBoost Algorithm, Phosphorus Content, Machine Learning

中图分类号: