ISSN:1003-8620

CN:42-1243/TF

主管:中信泰富特钢集团股份有限公司

主办:大冶特殊钢有限公司

特殊钢 ›› 2012, Vol. 33 ›› Issue (3): 4-7.

• 试验研究 • 上一篇    下一篇

张力对冷轧304奥氏体不锈钢薄板板形影响的数值模拟

董丽丽,邢淑清,姜晓艳,麻永林   

  1. 内蒙古科技大学材料与冶金学院,包头 014010
  • 收稿日期:2011-11-09 出版日期:2012-06-01 发布日期:2022-10-13
  • 作者简介:董丽丽(1987-),女,硕士研究生,2009年辽宁科技大学毕业,不锈钢板带冷轧工艺研究。
  • 基金资助:
    内蒙古科技大学材料加工过程创新团队基金项目 (52303001)

Numerical Simulation of Effect of Tension on Profile Shape of Cold Rolled 304 Austenite Stainless Steel Strip

Dong Lili, Xing Shuqing, Jiang Xiaoyan , Ma Yonglin   

  1. School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010
  • Received:2011-11-09 Published:2012-06-01 Online:2022-10-13

摘要: 为研究张力对单道次冷轧304奥氏体不锈钢薄板(/%:0.053C、0.55Si、1.50Mn、0.030P、0.002S、17.02Cr、8.01Ni、0.50Cu、0.08Mo)板形的影响,基于显示动力学有限元法,采用ANSYS/LS-DYNA软件对2 mm薄带钢的4辊轧机冷轧过程进行模拟和分析。结果表明,在压下量为0.06 mm,前张力13~40 MPa,后张力1~18MPa的轧制工艺下,轧后板带边部主要受压应力作用,中问部分受拉应力作用,带钢将产生微小的边浪;前张力由15 MPa增大至21 MPa时,带钢沿板宽方向应变值趋于均匀,增大前张力可改善带钢的平直度,后张力增大亦有助于改善板形,其效果较前张力明显。

关键词: 奥氏体不锈钢, 薄板, 冷轧, 张力, 有限元法, 板形

Abstract: In order to study the effect of tension on profile shape of single pass rolling strip of 304 austenite stainless steel (/% : 0. 053C, 0. 55Si, 1.50Mn, 0. 030P, 0. 002S, 17.02Cr, 8. OlNi, 0. 50Cu, 0. 08Mo) , based on explicit dynamic finite element method, the simulation and analysis on cold rolling process of 2 mm steel strip with four high mill have been carried out by ANSYS/LS-DYNA software. Results show that with reduction 0. 06 mm, forward tension 13 ~ 40 MPa and backward tension 1 ~ 18 MPa rolling process, the edge of rolled strip is acted under compressive stress and the middle part is acted under tensile stress led to produce tiny edge wave; with increasing forward tension from 15 MPa to 21 MPa; the strain of strip along width direction trends towards uniform, i. e. increasing forward tension is available to improve the flatness of strip, and increasing backward tension is also available to improve the profile shape of strip and its effect is more obvious that increasing forward tension.