ISSN:1003-8620

CN:42-1243/TF

主管:中信泰富特钢集团股份有限公司

主办:大冶特殊钢有限公司

特殊钢 ›› 2022, Vol. 43 ›› Issue (3): 91-94.

• 组织和性能 • 上一篇    下一篇

轧制变形对 F-M 双相钢 0.05C-2.8Mn-4.2Ni-2Al- 1.2Mo-1.9Cu晶粒细化的影响

马才女1, 高雪云1,2, 呼陟宇1, 翟亭亭1, 李瑞红1, 王海燕1,2, 薛春江3   

  1. 1内蒙古科技大学材料与冶金学院,包头014010,
    2内蒙古自治区新金属材料重点实验室,包头014010;
    3内蒙古科技大学工程训练中心,包头014010
  • 收稿日期:2021-11-18 出版日期:2022-06-01 发布日期:2022-06-22
  • 作者简介:马才女(1997-),女,硕士研究生,2019年辽宁工业大学(本科)毕业,先进金属材料研发。

Effect of Rolling Deformation on Grain Refinement of F-M Dual Phase Steel 0.05C-2.8Mn-4.2Ni-2Al-l. 2Mo-l. 9Cu

MA Cainv1, GAO Xueyun1,2, HU Zhiyu1, ZHAI Tingting1, LI Ruihong1, WANG Haiyan1,2, XUE Chunjiang3   

  1. 1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010;
    2 Inner Mongolia Autonomous Region Key Laboratory of Advanced Metal Materials, Baotou 014010;
    3 Engineering Training Center, Inner Mongolia University of Science and Technology, Baotou 014010)
  • Received:2021-11-18 Published:2022-06-01 Online:2022-06-22

摘要: 借助EBSD场发射扫描电子显微镜,研究了轧制变形及热处理后的铁素体/马氏体双相钢0.05C-2.8Mn4.2Ni-2Al-1.2Mo-1.9Cu显微组织演变及力学性能。结果表明,经900℃30%+780℃75%变形,500℃退火的F-M钢晶粒尺寸0.97μm,屈服、抗拉强度和延伸率分别为876 MPa,976 MPa和15.2%,经900℃30%+780℃50%变形,500℃退火的F-M钢晶粒尺寸1.54μm,屈服、抗拉强度和延伸率分别为801 MPa,895 MPa和19.4%。由轧制变形导致的晶粒细化、小角度晶界增多,是提高实验钢强度的主要原因。然而,较大的轧制变形量也使过多的小角度晶界阻碍位错运动,从而导致实验钢在塑性变形过程中,延展性略差。

Abstract: By field emission scanning electron microscope equipped with an EBSD imaging system the structure and properties of ferritic/martensitic dual-phase steel 0. 05C-2. 8Mn-4. 2Ni-2AJ-l. 2Mo-l. 9Cu after rolling deformation and heat treatment are studied. The results show that by rolled with 900 °C. 30% +780 °C 75% deforming and 500 °C. annealed, of F- M steel the grain size 0.97μm, yield tensile strength and elongation are respectively 876 MPa, 976 MPa and 15.2% , and by rolled with 900 °C 30% +780 °C 50% deforming and 500 °C annealed, of F-M steel the grain size 1.54 μm, yield、 tensile strength and elongation are respectively 801 MPa,895 MPa and 19. 4%. Hie grain refinement and the increase of small-angle grain boundaries caused by rolling deformation are the main reasons for improving the strength of the experimental steel. However, the large rolling deformation also makes too many small-angle grain boundaries hinder the movement of dislocations, which leads to more difficult deformation arid slightly poorer ductility in the plastic deformation process of the experimental steel.