Study on Continuous Cooling Phase Transition of 12Cr1MoV
Pearlite Heat-resistant Steel
Li Yaqiang1,2, Li Yingying1, Li Chuan1,2, Han Baochen3, Shi Jingqing4
(1 Department of Automotive Engineering , Hebei Vocational University of Technology and Engineering, Xingtai 054000,
China;2 Hebei Special Vehicle Modification Technology Innovation Center, Hebei Vocational University of Technology
and Engineering, Xingtai 054000, China;3 School of material science and engineering, Hebei University of Science and
Technology, Shijiazhaung 050018, China;4 Chengde Jianlong Special Steel Co., Ltd., Chengde 067300, China)
Li Yaqiang, Li Yingying, Li Chuan, Han Baochen, Shi Jingqing. Study on Continuous Cooling Phase Transition of 12Cr1MoV
Pearlite Heat-resistant Steel[J]. Special Steel, 2024, 45(3): 85-90.
[1]杨瑞成,傅公维,王 晖,等 . 12Cr1MoV 钢高温时效中组织结
构变化的原子扩散分析[J]. 特殊钢,2004,25(3):6-9.
[2]张银桥,孔繁革,张继宏,等. 12Cr1MoVG厚壁钢管高温正火+
回火的组织和性能[J]. 特殊钢,2023,44(4):102-107.
[3]Harada N, Takuma M, Tsujikawa M, et al. Effects of V addition
on improvement of heat shock resistance and wear resistance of Ni
– Cr – Mo cast steel brake disc[J]. Wear,2013,302(1-2):
1444-1452.
[4]Li Z Q, Han J M, Li W J, et al. Low cycle fatigue behavior of Cr–
Mo–V low alloy steel used for railway brake discs[J]. Materials
Design (1980-2015),2014,56:146-157.
[5]王宁涛,王利军,郭俊成,等. 16MnCr5高温热塑性及连续冷却
转变曲线测定及应用[J]. 特殊钢,2023,44(4):120-124.
[6]李战卫,于学森,沈 奎,等 . 高强度汽车紧固件用钢 SCr440
连续冷却和等温冷却组织转变研究及应用[J]. 特殊钢,2022,
43(2):90-94.
[7]廉晓洁,成生伟,周 杰,等 . 20Cr1Mo1V 钢 CCT 曲线的测定
与分析[J]. 热加工工艺,2014,43(20):28-30+33.
[8]李红英,林 武,宾 杰,等 . 低碳微合金管线钢过冷奥氏体
连续冷却转变[J]. 中南大学学报(自然科学版),2010,41(3):
923-929.
[9]李红英,丁常伟,张希旺,等. 16MnR钢奥氏体连续冷却转变曲
线(CCT图)[J]. 材料科学与工程学报,2007,25(5):727-730.
[10]张 金,刘丰收,俞 喆. 贝氏体钢轨钢连续冷却转变曲线的测定及分析[J]. 热加工工艺,2016,45(4):84-86.
[11]Azuma M, Fujita N, Takahashi M, et al. Modelling upper and
lower bainite trasformation in steels[J]. ISIJ International,2005,
45(2):221-228.
[12]Enomoto M. Partition of carbon and alloying elements during the
growth of ferrous bainite[J]. Scripta Materialia,2002,47(3):
145-149.
[13]Fang H S, Yang J B, Yang Z G, et al. The mechanism of bainite
transformation in steels[J]. Scripta Materialia,2002,47(3):
157-162.
[14]Craven A J, He K, Garvie L A J, et al. Complex heterogeneous
precipitation in titanium-niobium microalloyed Al-killed HSLA
steels-I. (Ti, Nb)(C, N) particles[J]. Acta Materialia,2000,
48(15):3857-3868.
[15]Craven A J, He K, Garvie L A J, et al. Complex heterogeneous
precipitation in titanium-niobium microalloyed Al-killed HSLA
steels-II. Non-titanium based particles[J]. Acta Materialia,
2000,48(15):3869-3878.
[16]Pawlak K, Białobrzeska B, Konat Ł. The influence of austenitiz⁃
ing temperature on prior austenite grain size and resistance to
abrasion wear of selected low-alloy boron steel[J]. Archives of
Civil and Mechanical Engineering,2016,16(4):913-926.
[17]Lee S J, Park J S, Lee Y K. Effect of austenite grain size on the
transformation kinetics of upper and lower bainite in a low-alloy
steel[J]. Scripta Materialia,2008,59(1):87-90.
[18]徐 洲,赵连城 . 金属固态相变原理[M]. 北京:科学出版
社,2004.
[19]Huang J, Xu Z. Effect of dynamically recrystallized austenite on
the martensite start temperature of martensitic transformation[J].
Materials Science and Engineering: A, 2006, 438-440:
254-257.
[20]García-Junceda A, Capdevila C, Caballero F G, et al. Depen⁃
dence of martensite start temperature on fine austenite grain size
[J]. Scripta Materialia,2008,58(2):134-137.
[21]Zhang C L, Cai D Y, Wang Y H, et al. Effects of deformation
and Mo, Nb, V, Ti on continuous cooling transformation in Cu–
P–Cr–Ni–Mo weathering steels[J]. Materials Characteriza⁃
tion,2008,59(11):1638-1642.