Research and Development Progress of Oxidation Resistant Low Expansion GH6783 Alloy
Wang Zhigang1,2, Han Guangwei2, Zhou Lixin1, Ye Bing3, Cao Zheng1
1 Daye Special Steel Co., Ltd., Huangshi 435001, China;
2 High Temperature Materials Research Insitute, China Iron and Steel Research Institute Group, Beijing 100081, China;
3 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
Wang Zhigang, Han Guangwei, Zhou Lixin, Ye Bing, Cao Zheng. Research and Development Progress of Oxidation Resistant Low Expansion GH6783 Alloy[J]. Special Steel, 2025, 46(4): 35-42.
[1] 四 海. 莱特兄弟飞行秘史[J]. 科学之友, 2006(5): 30-31.
[2] 在辉煌党史中镌刻航空报国的铿锵誓言 [N]. 中国航空报,2021-07-01(11).
[3] 熊文明. 科技创新那些事儿:中国航空发动机的四面突围 [J]. 国企,2021(5):80-83.
[4] 张士宝. 高温合金:航天军工大发展带来广阔应用前景(中) [N]. 中国有色金属报,2018-02-10(7).
[5] 吴苡婷. 逐梦之旅:打造“中国产”飞机发动机叶片 [N]. 上海科技报,2021-04-09(001).
[6] 王旭东, 王海川. 加快高温合金发展 推动航空发动机研制 [N]. 世界金属导报,2017-11-14(B11).
[7] 韩硕. 高温合金在航天发动机上的应用 [N]. 中国有色金属报,2016-07-30(7).
[8] 杭材. 先进高温合金—制造先进发动机的基石 [N]. 中国航空报,2012-12-13(T03).
[9] 郭建亭. 高温合金材料学-中册-制备工艺[M]. 北京: 科学出版社, 2008.
[10] Smith D F, Smith J S. A History of controlled, low thermal expansion superalloys [J]. In: RUSSELL K C, SMITH D F, eds. Physical Metallurgy of Controlled Expansion Invar-Type Alloys; Las Vegas, Nevada: TMS; 1989. p. 253-269.
[11] SMITHDF, TILLACKDJ. 燃汽涡轮用的低膨胀超级合金; proceedings of the 国际燃汽涡轮研讨会, F, 1985 [C].
[12] 邓波, 韩光炜, 冯涤. 低膨胀高温合金的发展及在航空航天业的应用 [J]. 航空材料学报, 2003, 23(z1): 244-249.
[13] Smith J S, Smith Jr D F. Controlled expansion alloy: US4487743[P]. 1984-12-11.
[14] 韩光炜, 邓波, 杨玉军, 等. 海洋环境下不同低膨胀高温合金腐蚀抗力的比较研究 [J]. 钢铁研究学报, 2011, 23(z2): 21-24.
[15] 张绍维. 低膨胀高温合金的发展与应用 [J]. 航空制造工程, 1994, 09: 5.
[16] Tundermann J H. Development of INCONEL alloy 783, a low thermal expansion’ crack growth resistant superalloy [J]. Acta Metallurgica Sinica, 1996, 9(6): 503-507.
[17] Heck K A, Smith D F, Holderby M A, et al. Three-phase controlled expansion superalloys with oxidation resistance[C]. Superalloys 1992 (Seventh International Symposium). 1992: 217-226.
[18] Smith J S, Heck K A. Development of a low thermal expansion, crack growth resistant superalloy[C]. Superalloys 1996 (Eighth International Symposium). 1996: 91-100.
[19] Ma L Z, Chang K M, Mannan S K, et al. Effects of NiAl-β precipitates on fatigue crack propagation of INCONEL alloy 783 under time-dependent condition with various load ratios[J]. Scripta Materialia, 2003, 48(5): 551-557.
[20] Ma L Z, Chang K M, Mannan S K, et al. Effect of prolonged isothermal exposure on elevated-temperature, time-dependent fatigue-crack propagation in INCONEL alloy 783[J]. Metallurgical and Materials Transactions A, 2002, 33(11): 3465-3478.
[21] 韩光炜, 赵宇新. 中国航空材料手册 [M]. 中国航空材料手册. 2012: 910-925.
[22] Duan P, Liu Z D, Li B, et al. Effect of aging at 650 ℃ on microstructure and mechanical properties of GH783 alloy bolt[J]. Engineering Failure Analysis, 2020, 118: 104853.
[23] 王志刚, 王 立, 曹 政. Nb在变形高温合金中的作用[J]. 特殊钢, 2023, 44(6): 1-7.
[24] 林富生. 超超临界参数机组材料国产化对策 [J]. 动力工程, 2004, 2004(3): 311-316.
[25] Fahrmann M G, Wereszczak A A, Kirkland T P. Stress relaxation behavior and dimensional stability of INCONEL® alloy 783[J]. Materials Science and Engineering: A, 1999, 271(1-2): 122-127.
[26] 沈 治, 沈红卫, 孙 锋, 等. IN783合金热处理工艺的热动力学评估及成分设计[J]. 动力工程学报, 2010, 30(4): 287-292.
[27] Sun S B, Tao S Y, Wang S L, et al. Effect of recovery heat treatment on microstructure and properties of IN783 bolts in service[J]. Journal of Materials Engineering and Performance, 2023, 32(12): 5523-5534.
[28] Yeom J T, Jung E J, Kim J H, et al. Modeling and simulation of dynamic recrystallization and grain growth during hot working of inconel 783 superalloy[J]. Surface Review and Letters, 2010, 17(1): 105-109.
[29] 贾新云, 赵宇新, 张绍维. β时效对低膨胀高温合金GH783组织与性能的影响[J]. 金属热处理, 2007, 32(9): 31-33.
[30] 张艳艳, 韩光炜, 邓 波. In783合金的相组成和组织结构[J]. 钢铁研究学报, 2007, 19(4): 58-61.
[31] 韩光炜, 敦博, 杨玉军, 等. 抗氧化低膨胀GH783合金长时组织性能稳定性研究 [J]. 钢铁研究学报, 2011, 23(z2): 278-281.
[32] 贾新云, 赵宇新, 张绍维. 热处理对GH783合金组织与性能的影响 [J]. 材料工程, 2006, 2006(Z1): 165-171.
[33] 贾新云, 赵宇新. 长期时效对低膨胀高温合金GH783组织与性能的影响[J]. 航空材料学报, 2006, 26(4): 14-17.
[34] Han Z S, Du J F, Liang J, et al. Evolution of In783 alloy in microstructure and properties enduring different service times[J]. Rare Metals, 2024, 43(1): 334-341.
[35] Wu Y K, Tian J, Xiong W, et al. Correlation between evolving microstructures and mechanical properties of served inconel 783 superalloys[J]. Journal of Alloys and Compounds, 2021, 851: 156921.
[36] Tang K, Zhang Z B, Tian J, et al. Hot deformation behavior and microstructural evolution of supersaturated Inconel 783 superalloy[J]. Journal of Alloys and Compounds, 2021, 860: 158541.
[37] Yang M H, Zhang Z, Han Z S, et al. The formation of Ni5Al3 phase and its effect on the mechanical properties of In783 alloy[J]. Intermetallics, 2020, 126: 106930.
[38] 曹 政, 伍 伟, 王志刚, 等. Inconel 783合金ϕ508 mm自耗锭组织分析[J]. 特殊钢, 2023, 44(6): 96-100.