Effects of Electropulsing Treatment on the Microstructure and Mechanical Property of M2 High-speed Steel
Zhang Jiatao1, Liu Zhaohua2, Ye Lirun1
(1 Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China;2 Pangang Group Research Institute Co., Ltd., Panzhihua 610031, China)
Zhang Jiatao, Liu Zhaohua, Ye Lirun. Effects of Electropulsing Treatment on the Microstructure and Mechanical Property of M2 High-speed Steel[J]. Special Steel, 2025, 46(3): 38-44.
[1] Hwang K C, Lee S, Hui C L. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls. Part I : Microstructural analysis [J]. Materials Science & Engineering A, 1998, 254(1–2): 296-304.
[2] 曹玉龙, 张赛康, 汪秀秀, 等. 加热温度对高钒高速钢中M2C碳化物分解转变行为的影响 [J]. 特殊钢, 2024, 45(4): 146-152.
[3] Wang R, Andrén H O, Wisell H, et al. The role of alloy composition in the precipitation behaviour of high speed steels [J]. Acta Metall Mater, 1992, 40(7): 1727-1738.
[4] Bin Z, Yu S, Jun C, et al. Evolving Mechanism of Eutectic Carbide in As-cast AISI M2 High-speed Steel at Elevated Temperature [J]. Journal of Shanghai Jiaotong University(Science), 2010, 15(4): 463-471.
[5] Wu Q, Sun D, Liu C. Effect of Austenitizing Temperature on Microstructure and Mechanical Properties of Semi-High-Speed Steel Cold-Forged Rolls [J]. J Mater Eng Perform, 2008, 18(7): 952-958.
[6] 杨智凯, 柏鉴玲, 张欣悦. 热处理对激光选区熔化成型高速钢组织和力学性能的影响 [J]. 材料工程, 2022, 50(12): 135-142.
[7] 孙中豪, 李强, 张明亮, 等. 磁控电渣重熔对M2高速钢凝固组织及力学性能的影响 [J]. 特殊钢, 2024, 45(4): 68-76.
[8] Zhou X, Zhu W, Jiang H, et al. A New Approach for Refining Carbide Dimensions in M42 Super Hard High-speed Steel [J]. J Iron Steel Res Int, 2016, 23(8): 800-807.
[9] 邹磊, 武颖, 岑启宏. 电脉冲处理对W6Mo5Cr4V2高速钢的影响 [J]. 材料工程, 2016, 44(02): 23-27.
[10] Liu B L, Lü Z Q, Feng W W, et al. Precipitation and decomposition behaviors of carbides in AISI M2 high-speed steel with nitrogen and mischmetal [J]. J Cent South Univ, 2017, 24(4): 782-788.
[11] Bridge J E, Maniar G N, Philip T V. Carbides in M-50 high speed steel [J]. Metallurgical & Materials Transactions B, 1971, 2(8): 2209-2214.
[12] Bhattacharyya D, Hajra A, Basu A, et al. The effect of grain size on the wear characteristics of high speed steel tools [J]. Wear, 1977, 42(1): 63-69.
[13] Chaus A S, Dománková M. Precipitation of Secondary Carbides in M2 High-Speed Steel Modified with Titanium diboride [J]. J Mater Eng Perform, 2013, 22(5): 1412-1420.
[14] Zhang J, Zhao H, Shi Q, et al. Fabrication of Ultrafine Grained High Speed Steel with Satisfactory Carbide Dissolution by Electropulsing Treatment [J]. ISIJ Int, 2019, 59(11): 2126-2129.
[15] Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater, 2006, 54(5): 1279-1288.
[16] Pereloma E, Edmonds D. Phase Transformations in Steels_Volume 1: Fundamentals and diffusion-controlled transformations [M]. Woodhead Pub, 2012.
[17] Chen D, Xu X, Zhao Y, et al. Superior mechanical properties of M35 high-speed steel obtained by controlling carbide precipitation and distribution via electropulsing treatment [J]. Materials Science and Engineering: A, 2023, 888: 145691.
[18] Zhao Y, Ma B, Guo H, et al. Electropulsing strengthened 2GPa boron steel with good ductility [J]. Mater Des, 2013, 43: 195-199.
[19] Zhao Y, Zhang J, Tan J, et al. Microstructure Refinement and Property Improvement of Metastable Austenitic Manganese Steel Induced by Electropulsing [J]. J Iron Steel Res Int, 2014, 21(7): 685-689.