ISSN:1003-8620

CN:42-1243/TF

Governed by: CITIC Pacific Special Steel Group Co., LTD

Sponsored by: Daye Special Steel Co., LTD.

Special Steel ›› 2025, Vol. 46 ›› Issue (3): 1-11.DOI: 10.20057/j.1003-8620.2024-00278

    Next Articles

Research Progress on Ferritic/Martensitic Steels for Integrated Fast Reactor Fuel Cladding

Feng Wei1, Guan Songyuan2,3, Li Junhong1, Shan Pengzhan2,3, Xing Weiwei2,3, Hao Xianchao2,3, Liang Tian2,3, Ma Yingche2,3   

  1. (1 China Institute of Atomic Energy, Beijing 102413, China;2 Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Liaoning Shenyang 110016, China)
  • Received:2024-12-15 Online:2025-05-30 Published:2025-05-23

一体化快堆燃料包壳用铁素体/马氏体钢研究进展

冯伟1, 关淞元2,3, 李峻宏1, 单鹏展2,3, 邢炜伟2,3, 郝宪朝2,3, 梁田2,3, 马颖澈2,3   

  1. (1 中国原子能科学研究院,北京 102413;2 中国科学院金属研究所师昌绪先进材料创新中心,沈阳 110016;3 中国科学院核用材料安全与评价重点实验室,沈阳 110016)
  • 作者简介:冯伟(1987—),男,博士,高级工程师
  • 基金资助:
    中国科学院战略性先导科技专项 (XDA0410000)

Abstract:  The integrated fast reactors use metallic fuel, with fuel cladding operating at temperatures ranging from 350 ℃ to 630 ℃ and a service lifespan exceeding 50 000 hours. As the operational cycle extends, the fast neutron irradiation dose of the cladding will increase from the current 80 dpa of MOX fuel to 150 dpa-300 dpa. Therefore, the developing new cladding materials with high thermal resistance and excellent irradiation performance has become an important part of the integrated fast reactor development. This paper summarized the background of ferritic/martensitic steels (FM steels) development, analyzed the mechanical properties and irradiation performance of various FM steels, and investigated the influence of different alloying elements on these properties. Based on these analyses, alloy optimization strategies for FM steels suitable for integrated fast reactor fuel cladding were proposed. The optimization strategy was initially modified for HT9 steel, and the modified HT9G was tested for room temperature tensile test and 700 ℃/100 MPa creep rupture life. The results show that the modified alloy exhibits excellent tensile strength and creep rupture life, its room temperature yield strength reaches 880 MPa, which is approximately 310 MPa higher than that of T91 steel and 80 MPa-120 MPa higher than that of HT9 and T92 steels. Under conditions of 700 ℃ and 100 MPa, the creep rupture life is 372 hours-385 hours, significantly exceeding the 70 hours-82 hours of HT9 under the same conditions. It shows the effectiveness of toughening design, laying the foundation for further optimization of component structural materials and enhancement of long-term durability and strength improvement.

Key words: Integrated Fast Reactor, Fuel cladding, Ferritic/martensitic steel, Irradiation performance, Creep property

摘要: 一体化快堆采用金属燃料,燃料包壳工作温度介于350~630 ℃,工作周期将最长达到50 000 h以上。随着工作周期延长,包壳承受的快中子辐照剂量将由目前的MOX燃料的80 dpa增加到150~300 dpa,因此,发展承温能力高、抗辐照性能优异的新型包壳材料,成为一体化快堆发展的重要组成部分。文章概述了铁素体/马氏体钢(铁马钢)材料的发展背景,分析了不同牌号铁马钢力学性能、辐照性能特点及不同合金元素对钢的性能的影响规律,进而提出了适用于一体化快堆堆芯组件用铁马钢材料的合金优化策略。利用优化策略对HT9钢进行初步改进,改进后的HT9G进行室温拉伸测试和700 ℃/100 MPa持久寿命测试。结果表明,改进后的合金具有良好的拉伸强度和持久寿命,其室温屈服强度可达880 MPa,比T91钢提高约310 MPa,比HT9和T92钢提高约80~120 MPa;700 ℃、100 MPa持久寿命达372~385 h,远高于HT9同条件下的70~82 h。显示出强韧化设计的有效性,为组件结构材料的进一步优化设计和长时持久强度提升奠定了基础。

关键词: 一体化快堆, 燃料包壳材料, 铁素体/马氏体钢, 辐照性能, 持久强度

CLC Number: