Zhao Dejiang, Pan Jixiang, Hu Huanzhang, Chen Xingrun. Solidification Properties and Ferrite Distribution Characteristics of 316H Austenitic Stainless Steel Calculated Based on Thermo-Calc[J]. Special Steel, 2025, 46(3): 28-33.
[1] Whittaker M T, Evans M, Wilshire B. Long-term creep data prediction for type 316H stainless steel[J]. Materials Science and Engineering: A, 2012, 552: 145-150.
[2] Xu Y T, Zhang B, Wei X X, et al. Improving pitting resistance of Mo-containing stainless steels via chloride-assisted stabilization of the passive film[J]. Corrosion, 2024, 227: 111787.
[3] Dai Y N, Zheng X T, Ding P S. Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications[J]. Nuclear Engineering and Technology, 2021, 53(11): 3474-3490.
[4] Zhang Y B, Zou D N, Wang X Q, et al. Influence of cooling rate on δ-ferrite/γ-austenite formation and precipitation behavior of 18Cr-Al-Si ferritic heat-resistant stainless steel[J]. Journal of Materials Research and Technology, 2022, 18: 1855-1864.
[5] Valiente Bermejo M A, Wessman S. Computational thermodynamics in ferrite content prediction of austenitic stainless steel weldments[J]. Welding in the World, 2019, 63(3): 627-635.
[6] 李建民,庄迎,尹嵬. 316 h不锈钢铁素体的形成与控制[J/OL]. 钢铁,2022,57(11): 123-130.
[7] 胡昕明, 张海明, 隋松言, 等. 模拟焊后热处理对316 H钢组织和性能的影响[J]. 压力容器, 2022, 39(3): 34-39.
[8] 李 骥, 何西扣, 许 斌, 等. Si含量对316H钢耐铅铋腐蚀性能的影响[J]. 中国冶金, 2022, 32(4): 54-62.
[9] Yang Y, Busby J T. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels[J]. Journal of Nuclear Materials, 2014, 448(1-3): 282-293.
[10] 荆雪,辛光瀚,耿鑫,等.渐进式固溶处理对316H不锈钢组织及性能的影响.特殊钢,2025,46(1):99-105.
[11] Hao Y S, Cao G M, Li C G, et al. Solidification structures of Fe-Cr-Ni-Mo-N super-austenitic stainless steel processed by twin-roll strip casting and ingot casting and their segregation evolution behaviors[J]. ISIJ International, 2018, 58(10): 1801-1810.
[12] Ferrandini P L, Rios C T, Dutra A T, et al. Solute segregation and microstructure of directionally solidified austenitic stainless steel[J]. Materials Science and Engineering: A, 2006, 435-436: 139-144.
[13] 刘益虎, 吴永全, 沈 通, 等. 连续升温过程中γ-Fe→δ-Fe→液态Fe相变的分子动力学模拟[J]. 金属学报, 2010, 46(2): 172-178.
[14] Hao K D, Gao M, Wu R. Cold rolling performance for austenitic stainless steel with equilibrium and non-equilibrium microstructures[J]. Journal of Materials Research and Technology, 2020, 9(1): 124-132.
[15] Salehi M, Eskandari M, Yeganeh M. Characterizations of the microstructure and texture of 321 austenitic stainless steel after cryo-rolling and annealing treatments[J]. Journal of Materials Engineering and Performance, 2022, 32: 816-834.
[16] Li Y N, Zou D N, Chen W W, et al. Effect of cooling rate on solidification and segregation characteristics of 904 L super austenitic stainless steel[J]. Metals and Materials International, 2022, 28(8): 1907-1918.