Effect of Microstructure Evolution on Thermal Conductivity of Alloy 690
Feng Han1, Zhu Yongchang2, Song Zhigang1, Gu Yang1, Liu Zhe1, Yang Debo2
1 Special Steel Research Institute Central Iron & Steel Research Institute Co., Ltd., Beijing 100081, China;
2 Glass Curing Engineering Technology Center China Building Materials Academy Co., Ltd., Beijing 100044, China;
Feng Han, Zhu Yongchang, Song Zhigang, Gu Yang, Liu Zhe, Yang Debo. Effect of Microstructure Evolution on Thermal Conductivity of Alloy 690[J]. Special Steel, 2025, 46(2): 109-115.
[1] 张克乾,张华,李扬,等. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报. 2022, 42(3): 458-463.
[2] 凡思军, 钱 敏, 薛天锋, 等. Joule加热陶瓷炉玻璃固化技术研究进展[J]. 硅酸盐学报, 2021, 49(12): 2736-2750.
[3] Zhao X, Wang M, Hao X C, et al. Precipitation of dendritic M23C6 carbides in alloy 690 during continuous cooling[J]. Journal of Alloys and Compounds, 2021, 851: 156694.
[4] 丰 涵. 热处理工艺对Inconel690合金组织和性能的影响研究[D]. 北京: 钢铁研究总院, 2008.
[5] Betova I, Bojinov M, Ikäläinen T, et al. Corrosion of alloy 690 in simulated steam generator crevices: Effect of applied potential, pH and Pb addition[J]. Journal of the Electrochemical Society, 2022, 169(2): 021502.
[6] Kuang W J, Was G S. The effect of grain boundary structure on the intergranular degradation behavior of solution annealed alloy 690 in high temperature, hydrogenated water[J]. Acta Materialia, 2020, 182: 120-130.
[7] Sourabh K, Singh J B. Tensile behavior of alloy 690 in the dynamic strain aging regime[J]. Journal of Materials Engineering and Performance, 2023, 32(7): 2932-2949.
[8] Moss T, Kuang W J, Was G S. Stress corrosion crack initiation in Alloy 690 in high temperature water[J]. Current Opinion in Solid State and Materials Science, 2018, 22(1): 16-25.
[9] Wang C, Liu Z, Xiao S, et al. Effects of Sn, Ca additions on thermal conductivity of Mg matrix alloys[J]. Materials Science and Technology, 2016, 32(6): 581-587.
[10] Wang C M, Chen Y G, Xiao S F, et al. Thermal conductivity and mechanical properties of as-cast Mg-3Zn-(0.5∼3.5)Sn alloys[J]. Rare Metal Materials and Engineering, 2013, 42(10): 2019-2022.
[11] Pan H C, Pan F S, Peng J, et al. High-conductivity binary Mg–Zn sheet processed by cold rolling and subsequent aging[J]. Journal of Alloys and Compounds, 2013, 578: 493-500.
[12] Li B C, Hou L G, Wu R Z, et al. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy[J]. Journal of Alloys and Compounds, 2017, 722: 772-777.
[13] Xie T C, Shi H, Wang H B, et al. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg–Zn–La/Ce system[J]. Journal of Materials Science & Technology, 2022, 97: 147-155.
[14] 杨树峰, 贾雷, 鄢宇灿,等.. 镍基变形高温合金裂纹形成及控制研究进展[J]. 特殊钢, 2024, 45(4): 13-25.
[15] 秦兴文, 王 坤, 蔡 珑, 等. 固溶处理温度对冷轧Inconel 601镍基合金管材组织及性能的影响[J]. 特殊钢, 2023, 44(2): 90-95.
[16] Olmsted D L, Foiles S M, Holm E A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy[J]. Acta Materialia, 2009, 57(13): 3694-3703.
[17] Zhang Q W, Wang X T, Qin Y, et al. Improving thermal conductivity of a nickel-based alloy through advanced electromagnetic coupling treatment[J]. Journal of Materials Research and Technology, 2022, 21: 4708-4723.