[1] 钟顺思,王昌生.轴承钢[M].北京:冶金工业出版社,2002:3-5.
[2] 杨忠敏.谈轴承钢及其冶金质量检验[J].金属世界,2011(1): 40-45.
[3] Hashimoto K, Fujimatsu T and Tsunekage N ,et al. Study of Rolling Contact Fatigue of Bearing Steels in Relation to Various Oxide Inclusions[J]. Materials & Design,2011,32(3):1605-1611.
[4] Guetard G and Rivera-Diaz-Del-Castillo P E J. Formation of Oxide under Rolling Contact Fatigue [J]. Tribology International, 2016, 95:262-266.
[5] 川上潔.轴承钢的淸净化[C].日本铁钢协会第182-183次西山纪念技术讲座-介在物制御与高清净钢制造技术,2004. 10,东京,151-179.
[6] Lund T and Akesson J. Oxygen Content,Oxiclic Microincdusions and Fatigue Properties of Rolling Bearing Steels [M]. Effect of Steel Manufacturing Processes on the Quality of Bearing Steels. ASTM STP987, J. J. C. Hoo,Ed. American Society for Testing and Material. Philadelphia. 1988:308-330.
[7] 上杉年一.わが国の軸受鋼の進歩発展铁上钢, 1988,74(10):1889-1894.
[8]上杉年一.垂直型連続鋳造軸受鋼©製造[J].铁?:钢, 1985,71(14):1631-1638.
[9] Ma W J, Bao Y P and Wang M ,et al. Effect of Mg and Ca Treatment on Behavior and Particle Size of Inclusions in Bearing Steels [J]. ISIJ International,2014,54(3) :536-542.
[10] 阮小江,姜周华,龚伟,等.精炼渣对轴承钢中氧含量和夹杂物的影响[J].特殊钢.2008,29(5):13.
[11] Zheng L and Xu M H. Study of Vacuum Carbon Deoxidation of High Carbon Chromium-Bearing Steel [J]. Journal of ASTM Internationalt,2006,3(6) :20-24.
[12] Unigame Y, Hiraoka K and Takasu I, et al. Evaluation Procedures of Non metallic Inclusions in Steel for Highly Reliable Bearings[J]. Journal of ASTM International ,2006,3(5 ) :34-40.
[13]Deng Z Y and Zhu M Y. Evolution Mechanism of Non-metallic Inclusions in Al-Killed Alloyed Steel during Secondary Refining Process[J]. ISIJ International ,2013 ,53(3 ) : 450-458.
[14]Payandeh Y and Soltanieh M. Oxide Inclusions at Different Steps of Steel Production [J]. Journal of Iron & Steel Research International,2007,14(5) :3946.
[15] Fujii K, Nagasaka T and Hi no M. Activities of the Constituents in Spinel Solid Solution and Free Energies of Formation of MgO, MgO Al2O3 [J].ISIJ International,2007,40( 11 ): 1059-1066.
[16] Okuyama G, Yamaguchi K and Takeuchi S, et al. Effect of Slag Composition on the Kinetics of Formation of Al2O3-MgO Inclusions in Aluminum Killed Ferritic Stainless Steel [J]. ISIJ International, 2000,40(2):121-128.
[17] Masana M. Cation Diffusion in Olivine-II. Ni-Mg, Mn-Mg, Mg and Ca[J]. Geochimica Et Cosmochimica Acta, 1981,45(9):1573-1580.
[18] LatouiTette T and Wasserburg G J. Mg Diffusion in Anorthite: Implications for the Formation of Early Solar System Planetesimals [J]. Earth & Planetary Science letters, 1998.158(3-4) :91 -108.
[19] Todoroki H and Mizuno K. Variation of Inclusion Composition in 304 Stainless Steel Deoxidized with Aluminum [J]. ISS Transaction ,Iron Steelmaker,2003 ,30 :59-67.
[20] Chen P J, Zhu C Y and Li G Q, et al. Effect of Sulphur Concentration on Precipitation Behaviors of MnS-containing Inclusions in GCrl5 Bearing Steels after LF Refining [J]. ISIJ International, 2017,57(6) :1019-1028.
[21] Sun G L, Song B and Yang L Z, el al. Effect of Manganese Sulfide on the Precipitation Behavior of tin in Steel[J]. International Journal of Minerals Metallurgy & Materials,2014,21 (7) :654-659. |