[1]李中友.G20CrNi2MoA渗碳轴承钢生产工艺的探讨[J].特钢 技术,2010, 16(64), 10-14.
[2]Hashimoto K, Fujimatsu T and Tsunekage N, et al. Study of Rolling Contact Fatigue of Bearing Steels in Relation to Various Oxide Inclusions [J]. Materials Design, 2011,32(3) :1605-1611.
[3]Weber V, Jardy A and Dussoubs B, et al. A Comprehensive Model of the Electroslag Remelting Process: Description and Validation [J] . Metalluipcal and Materials Transactions B, 2009, 40 (3): 271-280.
[4]Riickert A and Pfeifer H. Mathematical Modelling of the Flow Field, Temperature Distribution, Melting and Solidification in the Electroslag Remelting Process[J]. Magnetohydrodynamics t 2009 , 45(4): 527-533.
[5] Dong Y W, Jiang Z H and Cao Y L, et al. Effect of Slag on Inclusions during Electroslag Remehing Process of Die Steel [J]. Metallurgical and Materials Transactions B, 2014, 45(4): 1315-1324.
[6]Jiang Z H, Hou D and Dong Y W, et al. Effect of Slag on Titanium ,Silicon, and Aluminum Contents in SuperAlloy during Electroslag Remelting [J]. Metallurgical and Materials Transactions B, 2016, 47(2): 1465-1474.
[7]王昌生,刘胜国,徐明德,等.降低电渣重熔GCH5钢的氧含量[J].特殊钢,1997, 18(3): 31-35.
[8]耿 鑫,姜周华,刘福斌,等.电渣重熔过程中夹杂物的控制[J].钢铁,2009 , 44(12):4245.
[9]Du G, Li J and Wang Z B. Effect of Operating Conditions on Inclusion of Die Steel during Electroslag Remelting[J]. ISU Intemational, 2018, 58(1): 78-87.
[10]李正邦.电渣冶金的理论与实践[M].北京:冶金工业出版社, 2011.
[11]Mitchell A, Carmona F R and Samuelsson E. The Oxidation of Low-Alloy Steel Ingots during ESR [J]. Transactions ISU, 1984, 24 (7): 547-556.
[12]李正邦,周文辉,王庆和.自耗电极原始夹杂物成分对电渣重熔精炼效果的影响[J]钢铁,1983, 18(5): 13-20.
[13]曲明磊,成国光,李世健,等. 2.3 t电渣锭重熔过程电极插入深度的数学模型和应用[J]特殊钢,2017, 38(3): 58
[14]Li S J, Cheng G G and Yang L, et al. A Thermodynamic Model to Design the Equilibrium Slag Compositions during Electroslag Remelting Process: Description and Verification [J]. ISU International, 2017, 57(4): 713-722.
[15]Li S J, Cheng G G and Miao Z Q, et al. Kinetic Analysis of Aluminum and Oxygen Variation of G20CrNi2Mo Bearing Steel during Industrial Electroslag Remelting Process [J]. ISU International, 2017,57(12) :2148-2156.
[16] Fraser M E and Mitchell A. Mass Transfer in the Electroslag Process. Pt. 1. Mass-Transfer Model, Ironmaking Steelmaking [J], 1976, 3 (5), 279-287.
[17]傅杰.电渣重熔过程中氧化物夹杂去除机理的探讨[J].金属学报,1979,15(4):526-539.
[18J Wikstrbm J, Nakajima K and Shibata H, et al. In Situ Studies of Agglomeration Between Al203-CaO inclusions at Metal/Gas, Metal/Slag Interfaces and in Slag [J]. Ironmaking Steelmaking t 2008, 35(8):589-599.
[19]Ogino K, Hara S and Miwa T, et al. TTie Effect of Oxygen Content in Molten Steel on the Interfacial Tension Between Molten Steel and Slag [J]. Tetsu-to-Hagan6, 1979,65( 14) :2012-2021.
[20]Zouvelou N, Mantzouris X and Nikolopoulos P. Interfacial Energies in Oxide/Liquid Metal Systems with Limited Solubility [J]. International Journal of Adhesion and Adhesives, 2007,27 ( 5 ) : 380-386.
[21]Mitchell A. Oxide Inclusion Behaviour during Consumable Electrode Remeltingf [J]. Ironmaking Steelmaking, 1974,1 (3): 172-179.
|