ISSN:1003-8620

CN:42-1243/TF

Governed by: CITIC Pacific Special Steel Group Co., LTD

Sponsored by: Daye Special Steel Co., LTD.

Special Steel ›› 2019, Vol. 40 ›› Issue (5): 1-6.

    Next Articles

Effects of Rolling Parameters on Temperature Distribution in the Hot Rolling of Strips

Guo Zhiqiang, Yang Jie , Ren Xueping   

  1. School of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010
  • Received:2019-04-09 Online:2019-10-01 Published:2022-05-12

轧制参数对板带热轧温度分布的影响

郭志强, 杨杰, 任学平   

  1. 内蒙古科技大学机械工程学院,包头014010
  • 作者简介:郭志强(1963-),男,硕士( 1986年北京科技大学),教授, 1983年包头钢铁学院(本科)毕业,机械力学行为及结构分 析研究

Abstract: A model for the study of hot strip rolling of Q345 is proposed, and the approach is based on thermo-mechanical analysis using the Finite-Element Method (FEM ). To assess the rolling behavior of materials during a pass, finite element program Abaqus/Explicit has been employed and the hot rolling process was modeled in three dimensions. The appropriate models for heat transfer mechanisms are considered and the temperature distribution along the rolled strip and the temperature variation during hot strip rolling process is predicted. The effects of various process parameters such as rolling speed(90 ~210 i/min) , Higher rolling speeds result in lower temperatures in the deformed metal;amount of thickness reduction(5% ~ 15% ) , higher reductions result in lower surface and strip center temperatures;initial thickness of the strip (115 ~345 mm) ,the smaller the size of the area affected by the thermal deformation in the larger plate thickness and interface heat transfer coefficient [30 ~50 W/(m2 · K) ]. As the heat transfer coefficient increases, the surface temperature and center temperature of the strip decrease, are considered.

Key words: Hot Strip Rolling, Temperature Distribution, Heat Transfer, Finite-Element Method ,

摘要: 提出了一种研究Q345钢的模型,该方法基于使用有限元法(FEM)的热机械分析。为了评估材料在轧制过程中的轧制行为,采用了有限元程序Abaqus/Explicit,并对热轧工艺进行了三维建模。考虑了传热机构的合适模型,并预测了轧制带材的温度分布和热轧带钢轧制过程中的温度变化。考虑了以下各种工艺参数的影响:轧制速度(90~210 r/min),较高的轧制速度导致变形金属内的温度降低;压下量(5%~15%),更高的压下量导致表面和带材中心的温度降低;带材的初始厚度(115~345 mm),在越大的板厚度中受到的热变形影响的区域的尺寸越小;传热系数[30~50 W/(m2·K)],随着传热系数的增加,带材的表面温度和中心温度降低。