[1]郭建伟,梁成浩.碳钢在高温高浓度溴化锂溶液中腐蚀行为[J]. 大连理工大学学报,2000,40(5):554-556.
[2]LEIVA-GARCIA R,MUnOZ-PORTERO M J,GARCIA-ANTON J. Corosion Behaviour of Sensitized and Unsensitized Alloy 900(UNS 1.4462)in Concentrated Aqueous Lithium Bromide Solutions at Different Temperatures[J].Corrosion Science,2010,52(3):950- 959.
[3]罗序禄,李文武,曹志锡.制冷机中溴化锂溶液腐蚀性研究[J]. 轻工机械,2011,29(1):104-107.
[4]LEIVA-GARCIA.R,M-P.M.J,GARCiA-ANT6N.J. Influence of Sensitisation on the Corrosion Behaviourof Alloy 926(UNS N08926) in Concentrated Aqueous Lithium Bromide Solutions at Different Temperatures[J].International Journal of ELECTROCHEMI CAL SCIENCE,2011,52(3):950-959.
[5]梁成浩,郭建伟.不锈钢在溴化锂吸收式制冷机中的腐蚀研究进展[J].REFRIGERATION,2000,19(3):28-32.
[6]蒋伏广,陆 柱.钼酸锂与苯骈三氮唑复配对碳钢在溴化锂溶液 中的缓蚀作用及其在溴化锂制冷机组中的应用[J].化学世界, 2006(1):14.
[7]BLASCO-TAMARIT E,IGUAL-MUnOZ A,ANT6NJG,et al. Effect of Temperature on the Corosion Resistance and Piting Behaviour of Alloy 31 in LiBr Solutions[J]. Corrosion Science,2008,50 (7):1848-1857.
[8]E. SARMENTOJG G-R,A.M. RAMIREZ-ARTEAGA, J.URU- CHURTU. Corrosion Inhibition of 316L Stainless Steel in LiBr Etileneglycol+ H2O By Using Inorganic Inhibitors[J]. International Journal of ELECTROCHEMICAL SCIENCE,2013,8:12417- 12433.
[9] CUEVAS-ARTEAGAC, CONCHA-CUZMáN M O.Corosion Study of SS316L Exposed to LiBr-H2O Solution Applying Electrochemical Techniques and Weight Loss Method[J]. Corrosion Engineering,
Science and Technology,2013,44(1):57-68.
[10] SARKARI KHORRAMIM, MOSTAFAEIM A,POURALIAKBAR H,et al. Study on Microstructure and Mechanical Characteristics of Low-Carbon Steel and Ferritic Stainless Steel Joints[J].Materials Science and Engineering:A,2014,608:35-45.
[11] ZHANG X,FAN L,XU Y,et al.Effect of Aluminum on Microstructure, Mechanical Properties and Pitting Corosion Resistance of Ultra-Pure 429 Ferritic Stainless Steels[J].Materials & Design(1980-2015),2015,65:682-689.
[12]王耀龙.超纯铁素体在不锈钢产业中的应用[J].内蒙古科技与经济,2012,12:84-85.
[13]邹 勇.高耐候性铁素体不锈钢TTS445J2[Z].中国钢结构协会房屋建筑钢结构分会2011年学术年会.广州.2011.
[14]童丽华.国产超纯铁素体不锈钢在Cl-环境下的点蚀行为研究 [D].成都;西南石油大学,2015.
[15]戴起勋.金属材料学[M].北京:化学工业出版社,2012.
[16]才筝.太阳能热水器用不锈钢耐点蚀性能的研究[J].中国钢铁业,2017(3):34-36.
[17]闵 梁.316L不锈钢中氧化物夹杂诱发点蚀行为的研究[D]. 武汉;武汉科技大学,2020.
[18]鲍明昱,任呈强.基于点蚀的316L不锈钢在酸性气田环境中的适应性评价[J],材料导报,2016,30(9):10-15.
[19]LIT,SCULLYJR,FRANKELG S.Localized Corrosion:Passive Film Breakdown vs. Pit Growth Stability:Part ⅢII.A Unifying Set of Principal Parameters and Criteria for Pit Stabilization and Salt Film Formation[J].Journal of The Electrochemical Society,2018, 165(11):C762-C770.
[20]HAHY,PARKCJ,KWONHS.Effects of Non-Metallic Inclusions on the lnitiation of Pitting Corrosion in 11% Cr Feritic Stainless Steel Examined by Micro-Droplet Cell[J].Corrosion Science, 2007,49(3):1266-1275.
[21] HUR.D.H,PARK.Y.S. Effect of Temperature on the Pitting Behavior and Passive Film Characteristics of Alloy 600 in Chloride Solution[J].2006,62:745-750.
[22]顾 玥,詹肇麟,荣凡.445M铁素体不锈钢缝隙腐蚀性能的 研究[J].特殊钢,2011,32(3):65-67.
[23]游香米,姜周华,李花兵.超纯铁素体不锈钢的开发与应用现状 [J].中国冶金,2006,16(11):16-19.
[24] SHUJ,BI H,LIX,et al.The Effect of Copper and Molybdenum on Pitting Corrosion and Stress Corrosion Cracking Behavior of Ultra- Pure Feritic Stainless Steels[J]. Corrosion Science,2012,57: 89-98.
[25] WANG Y,CHENG G,WU W,et al. Effect of pH and Chloride on the Micro-Mechanism of Pitting Corrosion for High Strength Pipeline Steel in Aerated NaCl Solutions[J]. Applied Surface Science, 2015,349:746-756. |