Research Progress on the Formation and Control of Cracks in Wrought Nickel-Based Superalloys
Yang Shufeng1, Jia Lei2, Yan Yucan1, Wang Tiantian1, Zhao Peng1,Yang Shulei1
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing,
Beijing 100083, China
Yang Shufeng, Jia Lei, Yan Yucan, Wang Tiantian, Zhao Peng, Yang Shulei. Research Progress on the Formation and Control of Cracks in Wrought Nickel-Based Superalloys[J]. Special Steel, 2024, 45(4): 13-25.
[1] Jia L, Cui H, Yang S F, et al. As-cast microstructure and homogenization kinetics of a typical hard-to-deform Ni-base superalloy[J]. Journal of Materials Research and Technology, 2023, 23: 5368-5381.
[2] 高首磊, 徐晓卫, 张 宏, 等. 高温均匀化对GH4710镍基合金组织及性能的影响[J]. 特殊钢, 2024, 45(1): 87-93.
[3] 江 河, 董建新, 张麦仓, 等. 800 ℃以上服役涡轮盘用难变形镍基高温合金研究进展[J]. 航空制造技术, 2021, 64(Z1): 62-73.
[4] 杨 浩, 王方军, 李 采, 等. 镍基高温合金的熔炼工艺研究进展[J]. 特殊钢, 2023, 44(3): 1-9.
[5] Yang S F, Yang S L, Qu J L, et al. Inclusions in wrought superalloys: a review[J]. Journal of Iron and Steel Research International, 2021, 28(8): 921-937.
[6] Zhao P, Gu Y, Yang S F, et al. Study on the Molten Pool Behavior, Solidification Structure, and Inclusion Distribution in an Industrial Vacuum Arc Remelted Nickel-Based Superalloy[J]. Metallurgical and Materials Transactions B, 2023, 54(2): 698-711.
[7] Li X X, Jia C L, Zhang Y, et al. Cracking mechanism in as-cast GH4151 superalloy ingot with high γ′ phase content[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(10): 2697-2708.
[8] El Mir H, Jardy A, Bellot J P, et al. Thermal behaviour of the consumable electrode in the vacuum arc remelting process[J]. Journal of Materials Processing Technology, 2010, 210(3): 564-572.
[9] Zhou W Z, Tian Y S, Tan Q B, et al. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion[J]. Additive Manufacturing, 2022, 58: 103016-103035.
[10] Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing[J]. Materials & Design, 2018, 160: 1238-1249.
[11] Jia L, Cui H, Yang S F, et al. Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30: 1-14.
[12] Lei J, Heng C, ShuFeng Y. Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing[J]. 2023, under review.
[13] Zhou W Z, Tian Y S, Tan Q B, et al. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion[J]. Additive Manufacturing, 2022, 58: 103016-103035.
[14] Xu J J, Lin X, Guo P F, et al. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy[J]. Journal of Alloys and Compounds, 2018, 749(2): 859-870.
[15] Jia L, Cui H, Yang S F, et al. The cracking behavior of the new Ni-based superalloy GH4151 in the triple melting process[J]. Journal of Materials Research and Technology, 2023, 25: 2368-2382.
[16] Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy[J]. Materials & Design, 2019, 174: 107793-107805.
[17] Lalpoor M, Eskin D G, Katgerman L. Cold-Cracking Assessment in AA7050 Billets during Direct-Chill Casting by Thermomechanical Simulation of Residual Thermal Stresses and Application of Fracture Mechanics[J]. Metallurgical and Materials Transactions A, 2009, 40(13): 3304-3313.
[18] Yu H, Liang J J, Bi Z N, et al. Computational Design of Novel Ni Superalloys with Low Crack Susceptibility for Additive Manufacturing[J]. Metallurgical and Materials Transactions A, 2022, 53(6): 1945-1954.
[19] Kazempour-Liasi H, Tajally M, Abdollah-Pour H. Effects of pre- and post-weld heat treatment cycles on the liquation and strain-age cracking of IN939 superalloy[J]. Engineering Research Express, 2019, 1(2): 25026-25041.
[20] Singh S, Andersson J. Hot cracking in cast alloy 718[J]. Science and Technology of Welding and Joining, 2018, 23(7): 568-574.
[21] Qin R Y, Duan Z L, He G. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52[J]. Metallurgical and Materials Transactions A, 2013, 44(10): 4661-4670.
[22] Agarwal G, Amirthalingam M, Moon S C, et al. Experimental evidence of liquid feeding during solidification of a steel[J]. Scripta Materialia, 2018, 146(4): 105-109.
[23] 王旭明, 程 军, 党惊知. 铸件热裂纹预测的判据[J]. 华北工学院学报, 1996, 12(1): 37-41.
[24] Bozzolo G, del Grosso M F, Mosca H O. Algorithm for the calculation of the coefficient of thermal expansion of multicomponent metallic alloys[J]. Materials Letters, 2008, 62(24): 3975-3977.
[25] Wei Q S, Xie Y, Teng Q, et al. Crack types, mechanisms, and suppression methods during high-energy beam additive manufacturing of nickel-based superalloys: A review[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(4): 100055. .
[26] 王 法. 高含量γ'特性对难变形GH4151合金组织性能影响及更高使用温度合金探索[D]. 北京: 北京科技大学, 2023.
[27] Brennan M C, Keist J S, Palmer T A. Defects in metal additive manufacturing processes[J]. Journal of Materials Engineering and Performance, 2021, 30(7): 4808-4818.
[28] Ghoussoub J N, Tang Y T, Dick-Cleland W J B, et al. On the influence of alloy composition on the additive manufacturability of Ni-based superalloys[J]. Metallurgical and Materials Transactions A, 2022, 53(3): 962-983.
[29] Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202: 417-436.
[30] Kou S. A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88: 366-374.
[31] JIANG H, DONG J X, ZHANG M C. Development of typical hard-to-deform nickel-base superalloy for turbine disk served above 800 ℃[J]. Aeronaut. Manuf. Technol., 2021, 64(1/2): 62-73.
[32] Zhang L, Wang L, Liu Y, et al. Hot cracking behavior of large size GH4742 superalloy vacuum induction melting ingot[J]. Journal of Iron and Steel Research International, 2022, 29(9): 1505-1512.
[33] 李 强. 镍基高温合金真空感应电极开裂行为的研究[D]. 沈阳: 东北大学, 2018.
[34] 毕中南, 秦海龙, 董志国, 等. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[35] Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach[J]. Acta Materialia, 2015, 94: 59-68.
[36] Hu B, Li Z X, Li D J, et al. A hot tearing criterion based on solidification microstructure in cast alloys[J]. Journal of Materials Science & Technology, 2022, 105: 68-80.
[37] Li L F, Zhang R J, Yuan Q Q, et al. An integrated approach to study the hot tearing behavior by coupling the microscale phase field model and macroscale casting simulations[J]. Journal of Materials Processing Technology, 2022, 310: 117782.
[38] Chen K, He X K, Liu Z D, et al. Porosity forming mechanism and numerical simulation of casting process optimization of nickel-based heat-resistant alloy electrode ingot with large height to diameter ratio[J]. Journal of Materials Research and Technology, 2024, 29: 2363-2375.
[39] Suyitno, Savran V I, Katgerman L, et al. Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys[J]. Metallurgical and Materials Transactions A, 2004, 35(11): 3551-3561.
[40] 张麦仓, 曹国鑫, 董建新. 冷却速度对GH4169合金凝固过程微观偏析及糊状区稳定性的影响[J]. 中国有色金属学报, 2013, 23(11): 3107-3113.
[41] 沙卫星, 魏仁杰, 周伟基, 等. 钢锭模和帽口的设计对特殊钢6 t八角钢锭成材率的影响[J]. 特殊钢, 2014, 35(6): 44-46.
[42] 唐郑磊, 许少普, 王福明, 等. 新型水冷模铸生产抗层状撕裂特厚板的浇铸参数模拟优化[J]. 特殊钢, 2023, 44(4): 22-27.
[43] Tang B, Li S S, Wang X S, et al. Effect of Ca/Sr composite addition into AZ91D alloy on hot-crack mechanism[J]. Scripta Materialia, 2005, 53(9): 1077-1082.
[44] Hu B, Richardson I M. Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminium alloys[J]. Materials Science and Engineering: A, 2006, 429(1-2): 287-294.
[45] 李树索, 郑运荣, 韩雅芳, 等. 铝含量对定向凝固Ni3 Al基合金显微组织和持久性能的影响[J]. 稀有金属材料与工程, 2004, 33(12): 1329-1332.
[46] 范映伟, 侯淑娥, 黄朝晖. Al含量对Ni3 Al基IC10合金凝固行为的影响[J]. 材料热处理学报, 2009, 30(1): 88-92.
[47] Zhao Z, Dong J X. Effect of eutectic characteristics on hot tearing of cast superalloys[J]. Journal of Materials Engineering and Performance, 2019, 28(8): 4707-4717.
[48] Sun Z J, Ma Y, Ponge D, et al. Thermodynamics-guided alloy and process design for additive manufacturing[J]. Nature Communications, 2022, 13: 4361.
[49] 盖永超. GH4151合金微观组织调控与拉伸性能研究[D]. 合肥: 中国科学技术大学, 2022.
[50] Yan B C, Zhang J, Lou L H. Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy[J]. Materials Science and Engineering: A, 2008, 474(1-2): 39-47.
[51] Chauvet E, Kontis P, J\"agle E A, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting[J]. Acta Materialia, 2018, 142: 82-94.
[52] Zhou Y Z, Volek A. Effect of carbon additions on hot tearing of a second generation nickel-base superalloy[J]. Materials Science and Engineering: A, 2008, 479(1-2): 324-332.
[53] Jia L, Cui H, Yang S F, et al. Effect of carbon addition on microstructure and mechanical properties of a typical hard-to-deform Ni-base superalloy[J]. Progress in Natural Science: Materials International, 2023, 33(2): 232-243.
[54] 郑运荣. 微量锆对DZ3高温合金凝固行为的影响[J]. 金属科学与工艺, 1988(3): 40-46.
[55] Zhao Y N, Ma Z Q, Yu L M, et al. New alloy design approach to inhibiting hot cracking in laser additive manufactured nickel-based superalloys[J]. Acta Materialia, 2023, 247: 118736.
[56] Zhang J, Singer R F. Effect of Zr and B on castability of Ni-based superalloy IN792[J]. Metallurgical and Materials Transactions A, 2004, 35(4): 1337-1342.
[57] Jia L, Cui H, Yang S F, et al. Effect of the cooling rates on the microstructure and segregation characteristics in directionally solidified GH4151 superalloy[J]. Materials Characterization, 2024, 209: 113735.
[58] 杨 浩, 王方军, 李 采, 等. 镍基高温合金的熔炼工艺研究进展[J]. 特殊钢, 2023, 44(3): 1-9.
[59] Mertens R, Dadbakhsh S, Van Humbeeck J, et al. Application of base plate preheating during selective laser melting[J]. Procedia CIRP, 2018, 74: 5-11.
[60] Guo B J, Zhang Y S, Yang Z S, et al. Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing[J]. Additive Manufacturing, 2022, 55: 102792.
[61] Lu N N, Lei Z L, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition[J]. Additive Manufacturing, 2020, 34: 101228.
[62] Guo H, Chaturvedi M C, Richards N L. Effect of nature of grain boundaries on intergranular liquation during weld thermal cycling of nickel base alloy[J]. Science and Technology of Welding and Joining, 1998, 3(5): 257-259.
[63] Won Y M, Yeo T J, Seol D J, et al. A new criterion for internal crack formation in continuously cast steels[J]. Metallurgical and Materials Transactions B, 2000, 31(4): 779-794.
[64] 赵惠田, 师昌绪. CoO孕育剂促进铸造镍基高温合金晶粒细化的研究[J]. 金属学报, 1981, 17(2): 118-123.
[65] Jin W Z, Zhang W, Li T J, et al. Study of the grain refinement technology by electromagnetic stirring for IN100 superalloy vacuum investment casting[J]. Advanced Materials Research, 2011, 189-193: 3789-3794.