Yang Rui, Li Yang, Sun Meng, Ma Shuai, Mao Yunqie, Jiang Zhouhua. Research Progress of TiN Formation and Control in the Smelting Process of Ti-Microalloyed Steel[J]. Special Steel, 2025, 46(1): 1-15.
[1] 黄日康, 张立峰, 姜仁波, 等. 超低碳铝脱氧钢连铸过程钢中非金属夹杂物的演变[J]. 炼钢, 2020, 36(6): 39-45.
[2] 屠兴圹, 徐建飞, 周淼, 等. 低碳铝脱氧20钢钢水洁净度控制研究 [J]. 特殊钢, 2022, 43(3): 35-38.
[3] 王存宇, 杨 洁, 常 颖, 等. 先进高强度汽车钢的发展趋势与挑战[J]. 钢铁, 2019, 54(2): 1-6.
[4] 张金坤. 张金坤, 钛微合金化低合金高强度结构钢开发. 河北省, 天津铁厂有限公司, 2022-08-15.
[5] 宋 扬, 刘丽华, 张中武. 钛微合金化低碳钢的研究进展[J]. 材料导报, 2021, 35(15): 15175-15182.
[6] 杭子迪, 冯运莉. 钛微合金钢研究现状和发展趋势[J]. 热加工工艺, 2021, 50(6): 22-25.
[7] Baker T N. Titanium microalloyed steels[J]. Ironmaking & Steelmaking, 2019, 46(1): 1-55.
[8] Karmakar A, Biswas S, Mukherjee S, et al. Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel[J]. Materials Science and Engineering: A, 2017, 690: 158-169.
[9] Karmakar A, Mukherjee S, Kundu S, et al. Effect of composition and isothermal holding temperature on the precipitation hardening in Vanadium-microalloyed steels[J]. Materials Characterization, 2017, 132: 31-40.
[10] 吴俊平, 靳 星, 龙木军, 等. 含钛微合金钢低温冲击韧性波动的原因与改进[J]. 中国冶金, 2017, 27(12): 59-65.
[11] 葛允宗, 王建军, 颜慧成, 等. 含Ti齿轮钢中TiN夹杂析出热力学及其控制[J]. 钢铁钒钛, 2012, 33(5): 50-54.
[12] 杨睿, 李阳, 姜周华, 等. 含氮微合金钢中氮化物的生成行为研究:第十四届中国钢铁年会[C]. 中国重庆, 2023: 330-334.
[13] Inoue K, Ohnuma I, Ohtani H, et al. Solubility product of TiN in austenite[J]. ISIJ International, 1998, 38(9): 991-997.
[14] 胡 煜, 赖朝彬, 郑晓楠, 等. 钛微合金钢研究现状及进展[J]. 江西冶金, 2023, 43(4): 298-305.
[15] Li B, Shi X, Guo H J, et al. Study on precipitation and growth of TiN in GCr15 bearing steel during solidification[J]. Materials, 2019, 12(9): 1463.
[16] Gui L T, Long M J, Zhang H H, et al. Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model[J]. Journal of Materials Research and Technology, 2020, 9(3): 5499-5514.
[17] 陈波涛, 张泽峰, 邢立东, 等. 含钛微合金钢凝固过程中TiN的析出行为分析[J]. 连铸, 2021, 46(3): 28-34.
[18] 王金永, 刘建华, 刘建飞, 等. Ti——IF钢凝固过程中TiN的析出机理和规律[J]. 北京科技大学学报, 2014, 21(8): 1025-1031.
[19] 屈天鹏, 王德永, 徐 周, 等. 含Nb-Ti微合金钢连铸过程中TiN析出行为研究[J]. 连铸, 2017, 42(2): 32-38.
[20] Vega M I, Medina S F, Quispe A, et al. Influence of TiN particle precipitation state on static recrystallisation in structural steels[J]. ISIJ International, 2005, 45(12): 1878-1886.
[21] Medina S F, Chapa M, Valles P, et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural steels[J]. ISIJ International, 1999, 39(9): 930-936.
[22] Chapa M, Medina S F, López V, et al. Influence of Al and Nb on optimum Ti/N ratio in controlling austenite grain growth at reheating temperatures[J]. ISIJ International, 2002, 42(11): 1288-1296.
[23] Liu J, Wang J J, Hu F Y, et al. Effects of Ti/N ratio on coarse-grain heat-affected zone microstructure evolution and low-temperature impact toughness of high heat input welding steel[J]. Coatings, 2023, 13(8): 1347.
[24] Zhu Z X, Kuzmikova L, Marimuthu M, et al. Role of Ti and N in line pipe steel welds[J]. Science and Technology of Welding and Joining, 2013, 18(1): 1-10.
[25] Tian Q R, Wang G C, Zhao Y, et al. Precipitation behaviors of TiN inclusion in GCr15 bearing steel billet[J]. Metallurgical and Materials Transactions B, 2018, 49(3): 1149-1164.
[26] Sasai K. Interaction between alumina inclusions in molten steel due to cavity bridge force[J]. ISIJ International, 2016, 56(6): 1013-1022.
[27] 田钱仁, 尚德礼, 王国承. GCr15轴承钢中TiN夹杂物聚合机理研究[J]. 钢铁研究学报, 2018, 30(11): 857-865.
[28] 王 乐, 刘 浏, 姚同路, 等. 低成本轴承钢洁净冶炼新工艺的开发[J]. 炼钢, 2018, 34(3): 67-72.
[29] 成东全, 陈兴润. 硅含量对含钛不锈钢全氧和夹杂物的影响[J]. 炼钢, 2019, 35(5): 23-29.
[30] 王 伟, 常国栋, 马骏鹏, 等. 含钛铁素体不锈钢精炼过程钛合金化工艺研究[J]. 炼钢, 2021, 37(2): 23-29.
[31] 王 敏, 包燕平, 崔 衡, 等. IF钢中Al2O3-TiN复合夹杂生成机理研究[J]. 钢铁研究学报, 2010, 22(7): 29-32+55.
[32] 李志强, 袁 磊, 刘 涛, 等. IF钢凝固过程中Al2O3-TiN复合夹杂物的形成机理[J]. 东北大学学报(自然科学版), 2012, 33(9): 1294-1298.
[33] 隋亚飞, 孙国栋, 赵 艳, 等. IF钢中含Ti夹杂物的衍变规律[J]. 北京科技大学学报, 2014, 21(9): 1174-1182.
[34] Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels[J]. Metallurgical and Materials Transactions A, 2006, 37(7): 2147-2158.
[35] Liu T, Long M J, Chen D F, et al. Effect of coarse TiN inclusions and microstructure on impact toughness fluctuation in Ti micro-alloyed steel[J]. Journal of Iron and Steel Research International, 2018, 25(10): 1043-1053.
[36] Jia X, Chen Y P, Li H K, et al. Study on the mechanism of AF nucleation induced by complex oxide inclusions after LF refining in oxide metallurgical steel[J]. Materials Characterization, 2023, 204: 113239.
[37] Li T, Yang J. State of the art in oxide metallurgy technology for improving weldability of high-strength low alloy steel [J]. International Journal of Minerals, Metallurgy and Materials, (2024). https://doi.org/10.1007/s12613-023-2754-y
[38] 朱立光, 张庆军. 基于氧化物冶金的微合金化研究[J]. 工程科学学报, 2022, 44(9): 1529-1537.
[39] 赵 沛. 氧化物冶金之探析[J]. 中国冶金, 2022, 32(10): 1-6.
[40] 郭志红, 史赛超, 王 旗, 等. Mg-Al-Ti系氧化物冶金工艺夹杂物控制的热力学分析[J]. 钢铁钒钛, 2022, 43(6): 126-137.
[41] 毕 胜, 王 鑫, 陈修君, 等. C82DA帘线钢中TiN夹杂的控制[J]. 特殊钢, 2022, 43(4): 46-49.
[42] 卢春光, 张国磊, 成国光, 等. GCr15SiMn轴承钢中大尺寸TiN生成与控制[J]. 钢铁, 2022, 57(12): 88-96.
[43] Duan H J, Zhang Y, Ren Y, et al. Distribution of TiN inclusions in Ti-stabilized ultra-pure ferrite stainless steel slab[J]. Journal of Iron and Steel Research International, 2019, 26(9): 962-972.
[44] 雷家柳. 过共析帘线钢中钛夹杂的析出机理及其控制[D]. 武汉: 武汉科技大学, 2016.
[45] 赵李平, 王 勇, 王鸿盛. 连铸中间包水口堵塞问题的研究现状[J]. 炼钢, 2007, 23(2): 59-62.
[46] 刘成宝, 何 毅, 王 毅, 等. 连铸浸入式水口结瘤和堵塞的原因分析及控制措施[J]. 山东冶金, 2020, 42(3): 12-15.
[47] 臧红臣, 钟 鹏. IF钢浸入式水口堵塞成因及改进措施[J]. 安徽冶金科技职业学院学报, 2020, 30(3): 18-20.
[48] 杨克枝, 张乔英, 常正昇. 含Ti铝镇静超低碳钢连铸过程水口堵塞控制实践[J]. 特殊钢, 2020, 41(6): 36-40.
[49] Lavers J D, Kadar L. Application of electromagnetic forces to reduce tundish nozzle clogging[J]. Applied Mathematical Modelling, 2004, 28(1): 29-45.
[50] 杨鑫, 张媛媛, 何志军, 等. 基于电脉冲技术抑制连铸水口结瘤堵塞的研究 [J]. 钢铁, 2021, 56(4): 52-56.
[51] 闫龙格. 基于脉冲电流调控钢液中非金属夹杂物行为及应用[D]. 北京: 北京科技大学, 2021.
[52] 刘朝阳, 于景坤, 袁 磊, 等. 外加电流对钢中夹杂物影响的研究进展[J]. 中国冶金, 2018, 28(4): 7-12.
[53] 裴西硕, 贾丹彬, 田 晨, 等. 脉冲电流对钢液凝固过程中夹杂物迁移行为的影响[J]. 中国冶金, 2022, 32(7): 44-50+66.
[54] 肖丽俊, 梁尚东, 黄冬建, 等. 脉冲电流作用下钢液中TiN粒子长大模型[J]. 中国冶金, 2024, 34(4): 72-78.
[55] Lifshitz I M , Slyozov V V . The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids, 1961, 19(1-2): 35-50.
[56] Wagner C. Theorie der alterung von niederschlägen durch umlösen (ostwald-reifung)[J]. Zeitschrift Für Elektrochemie, Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1961, 65(7-8): 581-591.
[57] Capurro C, Cicutti C. Analysis of titanium nitrides precipitated during medium carbon steels solidification[J]. Journal of Materials Research and Technology, 2018, 7(3): 342-349.
[58] Li M G, Matsuura H, Tsukihashi F. Fundamental research on evolution of TiN in Fe–Al–Ti–O–N alloy during isothermal holding[J]. Metallurgical and Materials Transactions B, 2022, 53(4): 2458-2470.
[59] Moon J, Lee C, Uhm S, et al. Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: Considering critical particle size[J]. Acta Materialia, 2006, 54(4): 1053-1061.
[60] 冯广乾, 乔琦, 宋焱, 等. 稀土对钢中夹杂物和组织的影响 [J]. 江西冶金: 1-14 [2024-05-08]. http://kns.cnki.net/kcms/detail/36.1105.TF.20240313.1527.002.html.
[61] Torkamani H, Raygan S, Garcia Mateo C, et al. Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels[J]. Metals and Materials International, 2018, 24(4): 773-788.
[62] Torkamani H, Raygan S, Garcia Mateo C, et al. Tensile behavior of normalized low carbon Nb-microalloyed steel in the presence of rare earth elements[J]. Materials Science and Engineering: A, 2019, 749: 56-64.
[63] 李慧蓉, 孙立根, 张鑫, 等. 镁处理对船板钢中钉扎粒子的作用机制 [J]. 钢铁: 1-19. [2024-05-08]. https://doi.org/10.13228/j.boyuan.issn0449-749x.20230724.
[64] 王念欣, 曾 晖, 王成镇, 等. 钙处理工艺对钢中夹杂物的影响分析及应用[J]. 云南冶金, 2024, 53(1): 178-186.
[65] 姜茂发, 张志祥, 王德永, 等. 铝钛脱氧钢中夹杂物特征及水口结瘤问题分析[J]. 工业加热, 2011, 40(4): 60-63.
[66] Long L K, Chen C Y, Li J Q, et al. New insights into the formation mechanism of TiN–Al2O3 composite inclusions in nickel-based superalloys based on density functional theory[J]. Metallurgical and Materials Transactions B, 2023, 54(6): 3078-3091.
[67] Sun M K, Jung I H, Lee H G. Morphology and chemistry of oxide inclusions after Al and Ti complex deoxidation[J]. Metals and Materials International, 2008, 14(6): 791-798.
[68] 王林珠, 李 翔, 赵禹栋, 等. 脱氧顺序对铝钛复合夹杂物的影响[J]. 钢铁, 2021, 56(11): 63-71.
[69] 徐李军, 潘贻芳, 陈 青, 等. 硼微合金化钢连铸坯角部裂纹控制[J]. 炼钢, 2015, 31(3): 22-26+30.
[70] Wang Y N, Bao Y P, Wang M, et al. Basic research on precipitation and control of BN inclusions in steel[J]. Metallurgical and Materials Transactions B, 2013, 44(5): 1144-1154.
[71] Wang Y N, Bao Y P, Wang M, et al. Precipitation behavior of BN type inclusions in 42CrMo steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(1): 28-36.
[72] 胡春林, 宋 波, 庞瑞朋, 等. Ti-Mg复合处理对16Mn钢焊接热影响区组织与性能的影响[J]. 金属热处理, 2013, 38(11): 55-58.
[73] 吴 静. Mg-RE处理对含Ti螺纹钢中夹杂物及钢性能的影响[D]. 苏州: 苏州大学, 2023.
[74] Qu T P, Zhang C W, Wang D Y, et al. Effect of Mg–Ti treatment on nucleation mechanism of TiN inclusions and ferrite[J]. Metals, 2020, 10(6): 755.
[75] Cao L, Wang G C, Xiao Y Y, et al. Effect of Mg addition on TiN inclusions in GCr15 bearing steel[J]. Journal of Iron and Steel Research International, 2022, 29(6): 925-938.
[76] Xiao Y Y, Cao L, Wang G C, et al. Formation and precipitation mechanism of TiN inclusion in Mg-treated GCr15 bearing steel[J]. Metallurgical and Materials Transactions B, 2022, 53(2): 916-930.
[77] Zhou X, Wang D, Li X, et al. Mechanism for TiN refinement and resultant heterogeneous nucleation of δ-Fe in magnesium-rare earth-treated ultrapure ferritic stainless steel [J]. Materials Characterization, 2023, 205: 113250.
[78] Xie Y M, Song M M, Zhu H Y, et al. Study on the formation of inclusions in Ti–La–Mg treated steel[J]. Metallurgical and Materials Transactions B, 2024, 55(1): 576-588.
[79] Li N, Wu K M, He T Q, et al. Effect of feeding Ca–Mg–RE–Zr composite cored wire during refining of liquid steel on weldability of ultrahigh strength wear resistant steels[J]. Science and Technology of Welding and Joining, 2014, 19(3): 265-270.
[80] 陈妍利, 杨健. 利用Ca、Zr和稀土的氧化物冶金技术最新进展 [J]. 炼钢, 2023, 39(1): 1-16.
[81] Lou H N, Wang C, Wang B X, et al. Effect of Ti–Mg–Ca treatment on properties of heat-affected zone after high heat input welding[J]. Journal of Iron and Steel Research International, 2019, 26(5): 501-511.
[82] Wang X, Chen Y, Wang C, et al. Effect of heat input on microstructure and impact toughness of coarse-grained heat-affected zone in Al–Ca and Ti–Ca killed steels[J]. Steel Research International, 2020, 91(9): 2000133.
[83] Wang X, Wang C, Kang J, et al. Improved toughness of double-pass welding heat affected zone by fine Ti–Ca oxide inclusions for high-strength low-alloy steel[J]. Materials Science and Engineering: A, 2020, 780: 139198.
[84] Liu X J, Yuan G, Misra R D K, et al. A comparative study of acicular ferrite transformation behavior between surface and interior in a low C–Mn steel by HT-LSCM[J]. Metals, 2021, 11(5): 699.
[85] 周 峰, 曹羽鑫, 万响亮. 稀土镧的添加对低合金高强钢粗晶热影响区韧性的影响[J]. 材料热处理学报, 2021, 42(12): 84-92.
[86] 黄 宇, 谢 有, 成国光, 等. 稀土对H13钢中夹杂物的影响[J]. 稀土, 2018, 39(5): 16-23.
[87] 马宏博. 稀土钇对T4003不锈钢中夹杂物影响的热力学分析及实验研究[D]. 秦皇岛: 燕山大学, 2023.
[88] 王 健, 彭 军, 张 芳, 等. 稀土铈对20CrMnTi钢中TiN相析出热力学计算及分析[J]. 钢铁, 2024, 59(4): 66-73+84.
[89] 李 斌. 镧钛复合处理对TRIP钢中非金属夹杂物的影响[D]. 武汉: 武汉科技大学, 2023.
[90] 何晓妍, 胡晓军. 稀土钇和铈对321不锈钢中钛类夹杂物的改性作用 [J]. 江西冶金: 1-14. [2024-05-08]. http://kns.cnki.net/kcms/detail/36.1105.tf.20240315.1208.002.html.