Su Liang, Gong Shuo, Wang Fuming. Effect of Preheat Treatment Process on Austenite Grain Growth Behavior in Gear Steel SCr420H for High Temperature Carburization[J]. Special Steel, 2023, 44(3): 74-83.
[1] 殷天颖, 王福明. SCr420H齿轮钢中AlN的析出行为[J]. 金属热处理, 2019, 44(7): 78-83.
[2] 刘华松, 董延楠, 郑宏光, 等. Nb微合金化对齿轮钢高温渗碳奥氏体晶粒度的影响[J]. 钢铁研究学报, 2021, 33(8): 828-838.
[3] McKimpson M G, Liu T, Maniruzzaman M. Novel steels for high temperature carburizing[R]. Technical Report, Caterpillar Inc, 2012: 20-24.
[4] Schüler V, Huchtemann B, Wulfmeier E. Hochtemperaturaufkohlung von Einsatzstählen[J]. HTM Journal of Heat Treatment and Materials, 1990, 45(1): 57-65.
[5] Wang F, Davis C, Strangwood M. Grain growth behaviour on reheating Al-Nb-containing steel in the homogenised condition[J]. Materials Science and Technology, 2018, 34(5): 587-595.
[6] Liu Z Y, Bao Y P, Wang M, et al. Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(3): 282-290.
[7] Matlock D K, Alogab K A, Richards M D, et al. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications[J]. Materials Research, 2007, 8(4): 453-459.
[8] 杨延辉, 王毛球, 陈敬超, 等. 高温渗碳齿轮钢的研究进展[J]. 特殊钢, 2013, 34(1): 22-24.
[9] 紅林豊, 中村貞行. 冷間鍛造用ボロン肌焼鋼(スーパーALFA鋼)[J]. 電気製鋼, 2000, 71(1): 65-72.
[10] 今浪祐太, 岩本隆, 西村公宏. 部品製造工程を革新する冷間鍛造用肌焼鋼 JECF® の開発[J]. まてりあ, 2019, 58(2): 108-110.
[11] Kubota M, Ochi T. Development of anti-coarsening extra-fine steel for carburizing[J]. Shinnittetsu Giho, 2003: 72-76.
[12] 神谷尚秀, 田中優樹, 石倉亮平. 浸炭時の異常粒成長におよばすAIN粒子径の影響[J]. 電気製鋼, 2018, 89(1): 3-11.
[13] Alogab K A, Matlock D K, Speer J G, et al. The influence of niobium microalloying on austenite grain coarsening behavior of Ti-modified SAE 8620 steel[J]. ISIJ International, 2007, 47(2):
307-316.
[14] Seo E J, Speer J G, Matlock D K, et al. Effect of Mo in combination with Nb on austenite grain size control in vacuum carburizing steels[J]. Journal of Materials Engineering and Performance, 2020, 29(6): 3575-3584.
[15] 陈强, 陈林芳, 杨明华. 18CrNiMo7-6钢的可控气氛高温渗碳工艺[J]. 金属热处理, 2022, 47(4): 231-239.
[16] 汪杨鑫, 赵秀明, 毛向阳, 等. SCr420H钢奥氏体晶粒长大动力学[J]. 钢铁, 2018, 53(7): 80-84.
[17] 张国强, 何肖飞, 尉文超, 等. 高温渗碳齿轮钢的晶粒粗化行为[J]. 钢铁, 2019, 54(5): 68-77.
[18] An X X, Tian Y, Wang H, et al. Effect of preheat treatment on microstructure and properties of a gear steel for high-temperature carburizing[J]. Steel research international, 2020, 91(10): 1-10.
[19] Enloe C M, Findley K O, Speer J G. Austenite grain growth and precipitate evolution in a carburizing steel with combined niobium and molybdenum additions[J]. Metallurgical and Materials Transactions A, 2015, 46(11): 5308-5328.
[20] 赵海东, 刘佳兴, 张朝磊, 等. 矿用高强度链环钢23MnNiMoCr54奥氏体晶粒长大行为的研究[J]. 特殊钢, 2021, 42(2): 10-13.
[21] 王飞, 王瑞, 李建新, 等. Nb对Cr-Co-Ni-Mo系超高强度齿轮钢组织和力学性能的影响[J]. 特殊钢, 2018, 39(3): 59-61.
[22] 胡德林, 刘智恩, 华文君, 等. 合金结构钢中AlN相的存在状态与奥氏体本质晶粒度的关系[J]. 特殊钢, 1982, 3(6): 24-32.
[23] Zhou T H, Zurob H S. Abnormal and post-abnormal austenite grain growth kinetics in Nb-Ti microalloyed steels[J]. Canadian Metallurgical Quarterly, 2011, 50(4): 389-395.
[24] 柳洋波, 崔京玉, 佟倩, 等. 铌对20CrMnTi钢渗碳过程中晶粒粗化行为的影响[J]. 材料热处理学报, 2015, 36(1): 124-131.
[25] 孙曼丽, 江波, 陈刚, 等. AlN改善车轮钢韧性的可行性分析[J]. 钢铁研究学报, 2014, 26(8): 53-56.