Research on Rolling Contact Fatigue Mechanism of High Clean Bearing Steel GCr15
Yin Qing1, Cao Wenquan2, Wu Xiaolin1, Wang Cunyu2, Wang Hui2, Yu Feng2
1 Jiangyin Xingcheng Special Steel Works Co., Ltd., Jiangyin 214429,China;
2 Research Institute of Special Steels, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
Yin Qing, Cao Wenquan, Wu Xiaolin, Wang Cunyu, Wang Hui, Yu Feng. Research on Rolling Contact Fatigue Mechanism of High Clean Bearing Steel GCr15[J]. Special Steel, 2023, 44(5): 113-120.
[1] 俞峰, 陈兴品, 徐海峰, 等.滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报,2020,56(4):513-522.
[2] 肖爱平, 张洲, 李德胜, 等.电渣重熔渣系对GCr15轴承钢洁净度的影响[J]. 特殊钢, 2022, 43(6): 34-37.
[3] 曹文全, 俞峰, 王存宇, 等.高端装备用轴承钢冶金质量性能现状及未来发展方向[J]. 特殊钢, 2021, 42(1):1-10.
[4] 王昆鹏, 王海洋, 徐建飞, 等. 120 t BOF-LF-RH-CC流程GCr15轴承钢洁净度研究[J]. 特殊钢, 2021, 42(2):14-17.
[5] 张林, 刘海, 官跃辉, 等.高碳铬轴承钢碳化物带状评定方法探究[J]. 特殊钢, 2022, 43(6): 42-45
[6] 孙飞龙, 耿克, 俞峰, 等.超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J].金属学报, 2020, 56(5):693-703.
[7] Hanwei Fu, Jakub Jelita Rydel, Adam M. Gola, et al. The relationship between 100Cr6 steelmaking, inclusion microstructure and rolling contact fatigue performance[J]. International Journal of Fatigue, :2019(129): 104899.
[8] Cao Z X, Shi Z Y, Yu F, et al. A new proposed Weibull distribution of inclusion size and its correlation with rolling contact fatigue life of an extra clean bearing steel [J].International Journal of Fatigue, 2019(126): 1-5.
[9] 史智越, 徐海峰, 许达, 等.冶金工艺对GCr15高周旋转弯曲疲劳性能的影响[J].钢铁, 2018, 53(11):85-92.
[10] 田超, 刘剑辉, 范建文, 等. 采用统计极值法评价超低氧轴承钢夹杂物[J]. 钢铁研究学报, 2018,30(2):127-131.
[11] Hashimoto K, Fujimatsu T, Tsunekage N, et al. Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions[J]. Materials & Design, 2011, 32(3): 1605-1611.
[12] Kato Y, Sato K, Hiraoka K, et al. Recent evaluation procedures of nonmetallic inclusions in bearing steels (statistics of extreme value method and development of higher frequency ultrasonic testing method)[M]. Bearing Steel Technology. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 176.
[13] Ne´lias D, Dumont M L, Champiot F, et al. Role of inclusions, surface roughness and operating conditions on rolling contact fatigue[J]. Journal of Tribology, 1999, 121(2): 240-251.
[14] Vander Voort G F. Inclusion ratings: Past, present, and future[M]. Hoo J, Green W B., Eds. Bearing Steels: Into the 21 st Century. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 13.
[15] 史智越, 徐海峰, 许达, 等. 采用ASPEX和旋弯疲劳法表征GCr15轴承钢夹杂物[J].钢铁, 2019,54(4):55-62.
[16] 雷家柳, 杨玲, 廖凯, 等. GCr15轴承钢120 t LF精炼终点CaO-MgO-Al2O3夹杂的特性研究[J].特殊钢, 2021, 42(5):11-15.
[17] 俞峰, 陈兴品, 杜松林, 等. 圆坯连铸GCr15SiMn的成分偏析和接触疲劳寿命研究[J].特殊钢, 2022, 43(6):13-20.
[18] Misaki Nagao Kazuhiko Hiraoka,Yasukazu Unigame. Influence of nonmetallic inclusion size on rolling contact fatigue life in bearing steel[J].Sanyo Technical Report,2005, 12(1):38-45.
[19] Guetard, G I. Toda C, Rivera-Díaz-del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50[J]. International Journal of Fatigue, 2016, 91: 59-67.
[20] Hideyuki Uyama. The Mechanism of White Structure Flaking in Rolling Bearings[R].Wind Turbine Tribology Seminar,2011.
[21] 蒋鲤平, 徐建飞, 王昆鹏, 等. 高碳铬GCr15轴承钢中镁铝夹杂物形成与控制工艺实践[J]. 特殊钢, 2022, 43(4): 41-45.
[22] 车晓健, 杨卯生, 唐海燕, 等. 高性能GCr15轴承钢中夹杂物控制与疲劳性能[J].钢铁, 2018, 53(5):76-85.
[23] Cao Z X, Shi Z Y, Yu F, et al. A new proposed Weibull distribution of inclusion size and its correlation with rolling contact fatigue life of an extra clean bearing steel[J]. International Journal of Fatigue, 2019, 126: 1-5.
[24] 王东跃, 夏佃秀, 何 毅, 等. GCr15轴承钢滚动接触疲劳失效分析[J]. 特钢技术, 2022, 28(1): 57-60+56.
[25] 罗 敏, 汪久根, 冯毅雄, 等. 含夹杂物轴承钢中裂纹的萌生与扩展[J]. 轴承, 2022(2): 11-16+22.
[26] 吕皓天, 杨亮, 陈浩, 等.轴承钢的长寿命化设计[J].轴承, 2022(2):11-16,22.
[27] 付悍巍, 崔一南, 张弛, 等. 轴承钢滚动接触疲劳研究进展[J].中国冶金, 2020, 30(9):11-23.
[28] 刘烨, 尹青, 李锋, 等. 超长疲劳寿命轴承钢的质量评价[J].中国冶金, 2020, 30(9):37-40.
[29] 罗敏, 王久根.非金属夹杂物对滚动接触疲劳裂纹萌生及扩展的影响[J].中国冶金, 2020, (6):58-66.
[30] 郭浩, 雷建中, 扈林庄, 等.滚动轴承接触疲劳失效的影响因素及其研究现状[J].失效分析与预防, 2019, 14(3): 206-211.
[31] Shi Z Y, Li J J, Zhang X D, et al. Influence mechanisms of inclusion types on rotating bending fatigue properties of SAE52100 bearing steel[J]. Materials, 2022, 15(14): 5037.
[32] 陈金华, 李淑欣, 鲁思渊, 等.轴承钢滚动接触疲劳亚表面夹杂处损伤分析[J].摩擦学学报, 2023, 30(9):37-40.
[33] Takeshi FUJIMATSU, Ryota MANABE. Advancement of research for quantitative prediction of rolling contact fatigue life [J].Sanyo Technical Report, 2019,26(1):41-50.
[34] 刘吉刚, 许晓红. 以抗疲劳性能提升为目标的高碳轴承钢质量改善[J].中国冶金, 2020, 30(9):75-82.