Thermodynamic Study on Denitrification and TiN Precipitation in IN718 Nickel Base Superalloy Melt
Luo Xiaoyu1,2, Guo Jing1,2,3, Guo HanJie1,2, Li Zeyou1,2
1 School of Metallurgy and ecological engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Special Melting and Preparation of High end Metal Materials Beijing Key Laboratory, Beijing 100083, China;
3 Daye Special Steel Co., Ltd., Huangshi 435001, China
Luo Xiaoyu, Guo Jing, Guo HanJie, Li Zeyou. Thermodynamic Study on Denitrification and TiN Precipitation in IN718 Nickel Base Superalloy Melt[J]. Special Steel, 2024, 45(1): 33-41.
[1] 李 瑶. IN718镍基合金超声辅助电火花加工研究[D]. 淄博: 山东理工大学, 2020.
[2] 丁兆奇. Incolocy 825镍基合金热变形行为和热加工性研究[D]. 太原: 太原科技大学, 2020.
[3] 李 莎, 赵振铎, 王贵平. N08800铁镍基合金热变形行为及组织演变[J]. 特殊钢, 2021, 42(5): 16-20.
[4] 李 烁, 闫 森, 金奎文, 等. 碳含量及热加工变形量对镍基合金GH3625组织和性能的影响[J]. 特殊钢, 2022, 43(2): 75-78.
[5] 李 晴, 李成龙, 钟裕国, 等. 固溶温度对UNS N07718合金组织及冲击性能的影响[J]. 特殊钢, 2023, 44(1): 78-82.
[6] 吴艳阳, 程世长, 刘正东, 等. 固溶温度对改型Inconel 718合金组织和性能的影响[J]. 特殊钢, 2007, 28(3): 19-21.
[7] 郭建亭. 高温合金材料学-上册-应用基础理论[M]. 北京: 科学出版社, 2008.
[8] Chen X C, Shi C B, Guo H J, et al. Investigation of oxide inclusions and primary carbonitrides in inconel 718 superalloy refined through electroslag remelting process[J]. Metallurgical and Materials Transactions B, 2012, 43(6): 1596-1607.
[9] Jiang R, Ji D W, Shi H C, et al. Effects of thermal exposure on high-cycle-fatigue behaviours in Ni-based superalloy GH4169[J]. Materials Science and Technology, 2019, 35(10): 1265-1274.
[10] 王振东. 感应炉冶炼工艺技术[M]. 北京: 机械工业出版社, 2012.
[11] Wada H, Pehlke R D. Nitrogen solution and titanium nitride precipitation in liquid Fe-Cr-Ni alloys[J]. Metallurgical Transactions B, 1977, 8(2): 443-450.
[12] Gao S Y, Wang M, Xie X Y, et al. Behavior of nitrogen in GH4169 superalloy melt during vacuum induction melting using returned materials[J]. Metals, 2021, 11(7): 1119.
[13] Amano K, Ito K, Sakao H. On the rates of nitrogen absorption and desorption in liquid iron[J]. Tetsu-to-Hagane, 1976, 62(9): 1179-1188.
[14] 王 旻, 张 龙, 杨亚倩, 等. 高Cr镍基合金脱氮反应热力学与动力学研究[J]. 稀有金属材料与工程, 2020, 49(11): 3803-3808.
[15] 李清华, 牛建平. 镍基高温合金真空感应熔炼脱氮的研究[J]. 真空, 2003, 40(2): 45-47.
[16] 于文馨, 牛建平. 镍基高温合金的真空感应熔炼脱氧和脱氮[J]. 新技术新工艺, 2002(3): 32-33.
[17] Zhu J J, Jiang L, Zhai L H, et al. Effect of TiN inclusions on oxidation behavior of austenitic stainless steels[J]. Materials Letters, 2023,335.
[18] Wang L, Xue Z L, Zhu H Y, et al. Thermodynamic analysis of precipitation behavior of Ti-bearing inclusions in SWRH 92 A tire cord steel[J]. Results in Physics, 2019, 14: 102428.
[19] Descotes V, Quatravaux T, Bellot J P, et al. Titanium nitride (TiN) germination and growth during vacuum arc remelting of a maraging steel[J]. Metals, 2020, 10(4): 541.
[20] Qu T P, Wang D Y, Wang H H, et al. Interface characteristics between TiN and matrix and their effect on solidification structure[J]. Journal of Iron and Steel Research International, 2021, 28(9): 1149-1158.
[21] Wang J, Wang L Z, Li J Q, et al. Effects of aluminum and titanium additions on the formation of nonmetallic inclusions in nickel-based superalloys[J]. Journal of Alloys and Compounds, 2022, 906: 164281.
[22] Kowanda C, Speidel M O. Solubility of nitrogen in liquid nickel and binary Ni-Xi alloys (Xi=Cr, Mo, W, Mn, Fe, Co) under elevated pressure[J]. Scripta Materialia, 2003, 48(8): 1073-1078.
[23] Li X Z, Li H B, Feng H, et al. Nitrogen solubility in molten Ni, Ni-Cr, Ni-Mo, and Ni-Cr-Mo alloys under pressurized atmosphere[J]. Metallurgical and Materials Transactions B, 2023, 54(1): 203-212.
[24] HINO M, ITO K. Thermodynamic data for steelmaking[M]. Tohoku University Press, 2010.
[25] KIM C K, MCLEAN A, ISHII F, et al. Thermodynamic of nitrogen dissolution in liquid nickel alloys[J]. ISS Trans, 1987,8: 29-35.
[26] Abdulrahman R F, Hendry A. Solubility of nitrogen in liquid nickel-based alloys[J]. Metallurgical and Materials Transactions B, 2001, 32(6): 1103-1112.
[27] Wada H, Pehlke R. Solubility of nitrogen in liquid Fe-Cr-Ni alloys containing manganese and molybdenum[J]. Metallurgical Transactions B, 1977, 8: 675-682.
[28] Herrera-Trejo M, Ablitzer D. Dissolution of nitrogen in liquid Ni-Cr superalloys[J]. Canadian Metallurgical Quarterly, 1997, 36(5): 341-345.
[29] Li X Z, Li H B, Feng H, et al. Nitrogen solubility in molten Ni, Ni-Cr, Ni-Mo, and Ni-Cr-Mo alloys under pressurized atmosphere[J]. Metallurgical and Materials Transactions B, 2023, 54(1): 203-212.
[30] Shahapurkar D S, Small W M. Nitrogen solubility in complex liquid Fe-Cr-Ni alloys[J]. Metallurgical Transactions B, 1987, 18(1): 225-230.
[31] Ozturk B, Matway R, Fruehan R J. Thermodynamics of inclusion formation in Fe-Cr-Ti-N alloys[J]. Metallurgical and Materials Transactions B, 1995, 26(3): 563-567.
[32] Qian K, Chen B, Zhao P X, et al. Solubility of nitrogen in liquid Ni, Ni–Nb, Ni–Cr–Nb, Ni–Fe–Nb, and Ni–Cr–Fe–Nb systems[J]. ISIJ International, 2019, 59(12): 2220-2227.
[33] 郭汉杰. 冶金物理化学[M]. 北京: 高等教育出版社, 2021: 555.
[34] 苏)阿维林(В.В.Аверин)等著,余新昌等译. 金属中的氮[M]. 北京: 冶金工业出版社, 1981: 223.
[35] Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys[J]. Metal Science, 1974, 8(1): 298-310.
[36] Sigworth G K, Elliott J F, Vaughn G, et al. The thermodynamics of dilute liquid nickel alloys[J]. Canadian Metallurgical Quarterly, 1977, 16(1): 104-110.
[37] BLOSSEY R G, PEHLKE R D. The solubility of nitrogen in liquid Fe-Ni-Co alloys[J]. AIME MET SOC TRANS, 1966,236(4): 566-569.
[38] CHERKASOV P A, AVERIN V V, SAMARIN A M. The Deoxidizing Capacity and Activity of Titanium in Nickel Alloys Containing Chromium[J]. IZV AKAD NAUK SSSR METALLY, 1967(1): 49-55.
[39] Wada H, Pehlke R D. Nitrogen solution and titanium nitride precipitation in liquid Fe-Cr-Ni alloys[J]. Metallurgical Transactions B, 1977, 8(2): 443-450.
[40] Dashevskii V, Aleksandrov A, Kanevskii A, et al. Deoxidation equilibria of manganese, silicon, and aluminum in iron-nickel-chromium melts[J]. Metallurgical and Materials Transactions B, 2016, 47(3): 1839-1850.
[41] STEELMAKING J. Steelmaking data sourcebook[Z]. Gordon and Breach Science Publishers, Montreux, 1988.
[42] Guo Y C, Wang C Z. Interaction coefficients in Fe-C-Ti-i (i = Si, Cr, AI, Ni) systems[J]. Metallurgical Transactions B, 1990, 21(3): 543-547.
[43] Yoshikawa T, Morita K. Influence of alloying elements on the thermodynamic properties of titanium in molten steel[J]. Metallurgical and Materials Transactions B, 2007, 38(4): 671-680.
[44] Janke D, Fischer W A. Das lösungsverhalten des sauerstoffs in nickelbasisschmelzen[J]. Archiv Für Das Eisenhüttenwesen, 1975, 46(5): 297-302.
[45] Venal W V, Geiger G H. The thermodynamic behavior of sulfur in molten nickel and nickel-base alloys[J]. Metallurgical Transactions, 1973, 4(11): 2567-2573.
[46] Zhang J, Han L H, Yan B J. Reassessment of aluminium-oxygen equilibrium in high Al molten steel during aluminium deoxidation process at 1873 K[J]. Metallurgical and Materials Transactions B, 2022, 53(4): 2512-2522.
[47] Kang Y, Thunman M, Sichen D, et al. Aluminum deoxidation equilibrium of molten iron–aluminum alloy with wide aluminum composition range at 1 873 K[J]. ISIJ International, 2009, 49: 1483-1489.
[48] Do K H, Jang J M, Son H S, et al. Effect of silicon on TiN formation in liquid iron[J]. ISIJ International, 2018, 58(8): 1437-1442.
[49] 潜 坤. 镍基合金中氧和氮的冶金热力学与动力学研究[D]. 合肥: 中国科学技术大学, 2021.
[50] 陈家祥. 炼钢常用图表数据手册[M]. 2版. 北京: 冶金工业出版社, 2010.
[51] 黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 1981.
[52] 柳百成主审胡汉起主编沈宁福姚山王自东参编. 金属凝固原理 第2版[M]. 北京:机械工业出版社, 2012.
[53] 闵志先, 沈 军, 冯周荣, 等. 定向凝固DZ125合金的溶质分配系数及偏析行为的研究[J]. 金属学报, 2010, 46(12): 1543-1548.