Process Analysis and Experiment of Precise Control of Nitrogen Content in Pressure Smelting of Mn18Cr18N
Lin Tengchang1, Li Longfei1, Cheng Ting2
1 Central Iron and Steel Research Institute , Beijing 100081, China;
2 Material Digital Research and
Development Center, China Iron and Steel Research Institute Group, Beijing 100081, China
Lin Tengchang, Li Longfei, Cheng Ting. Process Analysis and Experiment of Precise Control of Nitrogen Content in Pressure Smelting of Mn18Cr18N[J]. Special Steel, 2024, 45(4): 111-116.
[1] 刘海定, 王东哲, 魏捍东, 等. 高氮奥氏体不锈钢的研究进展[J]. 特殊钢, 2009, 30(4): 45-48.
[2] 汪 洋. Mn18Cr18N不锈钢制备工艺及组织和性能的研究[D]. 昆明: 昆明理工大学, 2018.
[3] 汤旭炜. Mn18Cr18N护环钢工艺的基础研究[D]. 北京: 北京科技大学, 2017.
[4] 王书桓, 赵定国. 高压冶金技术在高氮钢冶炼中的应用[J]. 太原理工大学学报, 2014, 45(1): 15-18+24.
[5] Zhu D L, Zhang M, Wang Y. Electron backscattered diffraction study of microstructural evolution during isothermal deformation of high-N Mn18Cr18 alloy[J]. Metallurgical and Materials Transactions B, 2019, 50(4): 1662-1673.
[6] Gan B, Zhang M, Li H Y, et al. A modified constitutive model and dynamic recrystallization behavior of high-N Mn18Cr18 alloy[J]. Steel Research International, 2017, 88(9): 433-440.
[7] Qin F M, Zhu H, Wang Z X, et al. Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel[J]. Materials Science and Engineering: A, 2017, 684: 634-644.
[8] Li F, Zhao X D, Zhang H Y, et al. Bauschinger effect of Mn18Cr18N austenitic stainless steel[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(2): 399-406.
[9] Chen H Q, Wang Z X, Qin F M, et al. Hot deformation behavior and processing maps of as-cast Mn18Cr18N steel[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2017, 32(4): 935-943.
[10] Ma Y P, Li X L, Wang C H, et al. Microstructure and impact wear resistance of TiN reinforced high manganese steel matrix[J]. Journal of Iron and Steel Research International, 2012, 19(7): 60-65.
[11] Wang Z H, Xie J P, Li Q, et al. TiN/γ-Fe interface orientation relationship and formation mechanism of TiN precipitates in Mn18Cr2 steel[J]. China Foundry, 2021, 18(3): 180-184.
[12] 张士岩, 卢 永, 王书桓. 液态铁基合金中氮溶解度的影响因素[J]. 钢铁研究, 2006, 34(1): 1-3.
[13] Simmons J W. Overview: High-nitrogen alloying of stainless steels[J]. Materials Science and Engineering: A, 1996, 207(2): 159-169.
[14] 岳江波, 甘晓龙, 陈子宏. 真空感应炉熔炼合金钢时用氮化物增氮的试验研究[J]. 特殊钢, 2012, 33(6): 1-4.
[15] 任伊宾, 杨 柯, 张炳春, 等. 真空感应炉充氩冶炼高氮Cr-Mn-Mo-Cu奥氏体不锈钢[J]. 特殊钢, 2004, 25(4): 13-15.
[16] 陈家祥. 炼钢常用图表数据手册[M]. 北京: 冶金工业出版社, 1984.
[17] 黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 1981.
[18] 王书桓, 吴彦辉, 赵定国. 凝固压力对高氮钢中氮宏观偏析的影响[J]. 铸造技术, 2013, 34(7): 848-850.
[19] 李花兵, 姜周华, 张祖瑞, 等. 氮在Fe-Cr-Mn合金体系中的溶解度计算模型[J]. 东北大学学报(自然科学版), 2008, 29(4): 549-552.