Characterization of the Microstructure and Mechanism of Rotatory Bending Fatigue of 30Cr15Mo1N High Nitrogen Stainless Bearing Steel
Shi Zhiyue1, Ning Xin1, Du Min2, Xu Haifeng1, Wang Hui1, Cao Wenquan1, Liang Jianxiong1
1 Research Institute of Special Steel ,Central Iron & Steel Research Institute Co., Ltd., Beijing 100081 , China;
2 Central Laboratory , Central Iron & Steel Research Institute Co., Ltd., Beijing 100081 , China
Shi Zhiyue, Ning Xin, Du Min, Xu Haifeng, Wang Hui, Cao Wenquan, Liang Jianxiong. Characterization of the Microstructure and Mechanism of Rotatory Bending Fatigue of 30Cr15Mo1N High Nitrogen Stainless Bearing Steel[J]. Special Steel, 2023, 44(5): 121-126.
[1]曹文全,俞峰,王存宇,等. 高端装备用轴承钢冶金质量性能现状及未来发展方向[J]. 特殊钢,2021,42(1):1-10.
[2]李昭昆,雷建中,徐海峰,等. 国内外轴承钢的现状与发展趋势[J]. 钢铁研究学报,2016,28(3):1-12.
[3]李扬帆. 在产业基础领域突破“卡脖子”技术[J]. 中国工业和信息化,2021,(5):78.
[4]李花兵,姜周华,冯浩. 高氮不锈钢[M]. 北京:科学出版社,2021.
[5]钟顺思,王昌生. 轴承钢[M]. 北京:冶金工业出版社,2000.
[6]徐 亮,李 涛,马永强,等. 改善不锈轴承钢9Cr18共晶碳化物的工艺研究[J]. 特殊钢,2022,43(6):46-49.
[7]徐海峰,史智越,俞峰,等. 高氮不锈轴承钢的微观组织与性能研究[J]. 特殊钢,2021,42(1):71-76.
[8]Johansson A,Arnberg L,Gustafson P,et al. Nitrogen alloyed stainless steels produced by nitridation of powder[J]. Metal Powder Report,1991,46(5):65-68.
[9]雍岐龙. 钢铁材料中的第二相[M]. 北京:冶金工业出版社,2006.
[10]高亦斌,陈根保,金卫强. AOD精炼高氮奥氏体不锈钢1Cr22Mn15N的工艺实践[J]. 特殊钢,2005,26(2):51-53.
[11]徐海峰,曹文全,俞峰,等. 国内外高氮马氏体不锈轴承钢研究现状与发展[J]. 钢铁,2017,52(1):53-63.
[12]俞峰,陈兴品,徐海峰,等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报,2020,56(4): 513-522.
[13]陈豪,周天鹏,陈泽军,等. 回火温度对30Cr15Mo1N微观组织和力学性能影响[J]. 钢铁,2019,54(5):60-7.
[14]陈豪,徐海峰,周天鹏, 等. 淬火和低温处理对X30 CrMoN 15 1组织性能影响[J]. 钢铁,2019,54(9):85-93.
[15]张敏, 杨卯生, 李树索, 等. 高氮不锈轴承钢中的碳氮化物对力学性能的影响[J]. 钢铁研究学报, 2012, 24(5): 18-23.
[16]郑滔,俞峰,张家涛, 等. 热处理工艺对高氮不锈轴承钢G30组织与性能的影响[J]. 金属热处理, 2013, 38(9): 21-25.
[17]Qin Y, Li J, Herbig M. Microstructural origin of the outstanding durability of the high nitrogen bearing steel X30CrMoN15-1[J]. Materials Characterization, 2020, 159 : 110049.
[18]Kubota S, Xia Y, Tomota Y. Work- hardening behavior and evolution of dislocation-microstructures in high- nitrogen bearing austenitic steels[J]. ISIJ International, 1998, 38(5): 474-481.
[19]Forrest P G. Fatigue of metals[M]. Oxford: Pergamon Press, 1962.
[20]Cao Z X, Shi Z Y, Liang B, et al. Melting route effects on the rotatory bending fatigue and rolling contact fatigue properties of high carbon bearing steel SAE52100[J]. International Journal of Fatigue, 2020, 140: 105854.
[21]da Costa e Silva A L V. Non-metallic inclusions in steels - origin and control[J]. Journal of Materials Research and Technology, 2018, 7(3): 283-299.
[22]Shiozawa K, Morii Y, Nishino S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime[J]. International Journal of Fatigue, 2006, 28(11): 1521-1532.
[23]Cao Z X, Shi Z Y, Yu F, et al. Effects of double quenching on fatigue properties of high carbon bearing steel with extra-high purity[J]. International Journal of Fatigue, 2019, 128: 105176.
[24]Shi Z Y, Wang H, Gao Y H, et al. Improve fatigue and mechanical properties of high carbon bearing steel by a new double vacuum melting route[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(7): 1995-2009.
[25]Shi Z Y,Xu H F,Wang C Y,et al. Crack initiation induced by twin-martensite and inclusion in rotatory bending fatigue of a high nitrogen martensite bearing steel[J]. Materials Science and Engineering:A,2022,861: 144402.
[26]Feng H,Jiang Z H,Li H B,et al. Influence of nitrogen on corrosion behaviour of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy[J]. Corrosion Science, 2018, 144:288-300.
[27]赵鑫, 温泽峰, 王衡禹, 等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021,21(1):1-35.
[28]宗华. 轴承钢球滚动接触疲劳寿命预测方法[J]. 传动技术,2022,36(4):28-33.
[29]Trojahn W, Streit E, Chin H A, et al. Progress in bearing performance of advanced nitrogen alloyed stainless steel, cronidur 30[J]. Materialwissenschaft Und Werkstofftechnik,1999,30(10):605-611.
[30]王中光 译. 材料的疲劳[M]. 2版. 北京:国防工业出版社, 1999.
[31]Sadeghi F, Jalalahmadi B, Slack T S, et al. A review of rolling contact fatigue[J]. Journal of Tribology, 2009, 131(4): 041403-1.
[32]Bhadeshia H K D H. Steels for bearings[J]. Progress in Materials Science,2012,57(2):268-435.