Shear Thinning Behavior and Surface Properties of Mold Flux for Thin Thickness Slabs at High-casting Speed
Ma Shaochen1,2, Yuan Zhipeng1,2, Zhang Caijun1,2
1 School of Metallurgy and Energy ,North China University of Science and Technology,Tangshan 063000, China;
2 Hebei High Quality Steel Continuous Casting Engineering Technology Research Center,Tangshan 063000,China;
Ma Shaochen, Yuan Zhipeng, Zhang Caijun. Shear Thinning Behavior and Surface Properties of Mold Flux for Thin Thickness Slabs at High-casting Speed[J]. Special Steel, 2024, 45(5): 76-84.
[1] 张剑君, 毛新平, 王春峰, 等. 薄板坯连铸连轧炼钢高效生产技术进步与展望[J]. 钢铁, 2019, 54(5): 1-8.
[2] 朱立光, 袁志鹏, 肖鹏程, 等. 高拉速薄板坯连铸中碳钢保护渣开发与应用[J]. 连铸, 2020, 45(1): 51-55.
[3] Li L P, Wang X H, Deng X X, et al. Application of high speed continuous casting on low carbon conventional slab in SGJT[J]. Steel Research International, 2014, 85(11): 1490-1500.
[4] Li L P, Wang X H, Deng X X, et al. Process and quality control during high speed casting of low carbon conventional slab[J]. Journal of Iron and Steel Research International, 2015, 22(1): 1-9.
[5] Wolf M. Strand Surface Quality and the Peritectic Reaction A Look into the Basic[C]. Steelmaking Conference Proceedings.IS S, Warrendale, PA,1998:53-62.
[6] 忽金钊. 保护渣添加剂组成对M2高速钢模铸锭表面质量的影响[J]. 特殊钢, 2023, 44(3): 59-63.
[7] 邸天成, 王杏娟, 刘增勋, 等. 430不锈钢用连铸保护渣渣圈形成长大机理分析和控制措施[J]. 特殊钢, 2022, 43(5): 63-67.
[8] Xu Y, Yuan Z P, Zhu L G, et al. Shear-thinning behavior of the CaO–SiO2–CaF2–Si3N4 system mold flux and its practical application[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(10): 1096-1103.
[9] Zhu L G, Yuan Z P, Xu Y, et al. Role of B2O3 on structure and shear-thinning property in CaO–SiO2–Na2O-based mold fluxes[J]. High Temperature Materials and Processes, 2019, 38(2019): 750-759.
[10] 朱立光, 袁志鹏, 肖鹏程, 等. 低碳钢薄板坯高速连铸保护渣研究与优化[J]. 钢铁, 2020, 55(11): 65-73+102.
[11] 朱广宇. 高锰高铝钢保护渣非牛顿流体性质研究[D]. 重庆: 重庆大学, 2018.
[12] Yuan Z P, Zhu L G, Xu Y. Effect of Al2O3 on shear-thinning property of mould flux for high-speed thin slab continuous casting and its study on the mechanism[J]. Ironmaking & Steelmaking, 2022, 49(1): 49-59.
[13] 赵春宝, 陈永艳, 徐金岩, 等. 利用高黏度保护渣解决低碳钢铸坯表面夹渣缺陷[J]. 宽厚板, 2018, 24(2): 11-14.
[14] 程红艳, 王 雨, 李丹科, 等. 连铸保护渣组分对熔渣表面张力的影响[J]. 连铸, 2008, 33(4): 42-44.
[15] 曾建华, 马晓涛, 吴国荣, 等. 低碳铝镇静钢冷轧起皮缺陷成因与保护渣优化[J]. 炼钢, 2017, 33(3): 68-73.
[16] 袁志鹏. 非牛顿流体连铸结晶器保护渣的研究[D]. 唐山: 华北理工大学, 2017.
[17] 谈慕华, 黄蕴元. 表面物理化学[M]. 北京: 中国建筑工业出版社, 1985: 98-99.
[18] Jeong Y C, Shin S H, Baek J Y, et al. Influence of silicon carbide on shear-thinning behavior of CaO-SiO2-CaF2-based mold fluxes[J]. Metallurgical and Materials Transactions B, 2021, 52(4): 2048-2055.
[19] Shin S H, Cho J W, Kim S H. Controlling the shear thinning property of calcium silicate melts by addition of Si3N4[J]. Journal of Non-Crystalline Solids, 2015, 423-424: 45-49.
[20] Swenson J, Börjesson L, McGreevy R L, et al. Structure and conductivity of fast ion-conducting borate glasses[J]. Physica B: Condensed Matter, 1997, 234-236: 386-387.